Preparation of Iron-Doped Carbon Dots for Enhanced Photocatalytic Carbon Dioxide Reduction

Article Preview

Abstract:

Photocatalytic reduction of carbon dioxide (CO2) to solar fuel is a potential approach to overcome the problem of high CO2 concentrations; however, the process still faces enormous challenges, such as low light absorption efficiency and high carrier recombination rates. Herein, Fe-doped carbon dots were prepared by a one-step hydrothermal method using sodium citrate, ethylenediamine, and FeCl3·6H2O as raw materials. The performances of the resulting materials toward the photocatalytic reduction of CO2 were investigated and the results showed that Fe doping can regulate the energy band structure of CDs. However, the conduction band potential of Fe-carbon dots displayed no obvious influence except in terms of band gap. Moreover, Fe doping reduced the recombination rate of photo-generated carriers in CDs, increased the mobility of photo-generated carriers, and declined the resistance during the migration of photo-generated electrons. The photocatalytic reduction performances of CO2 illustrated conversion yield of CO2 to CH3OH reaching 289.81 μmol·g (cat)-1·h-1 using Fe-CDs-13.0 catalyst, a value 2.36-fold higher than that of CDs. We found that Fe-CDs were synthesized by modulating the energy band structure of CDs. Fe-CDs improve visible light utilization and apply them to the photocatalytic reduction of CO2.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

45-58

Citation:

Online since:

June 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Wang, X.T. Shang, J.N. Shen, Z.Z. Zhang, D.B. Wang, J.J. Lin, J.C.S. Wu, X.Z. Fu, X.X. Wang, C. Li, Direct and indirect Z-scheme heterostructure-coupled photosystem enabling cooperation of CO2 reduction and H2O oxidation, J. Nat. Commun. 11 (2020) 3043.

DOI: 10.1038/s41467-020-16742-3

Google Scholar

[2] Y.T. Zhang, X.M. Ma, K.K. Li, J. Jia, M. Chen, Y.Q. Dang, L. Dai, g-C3N4/PP-CDs Heterostructure with Lewis acidity and alkalinity promoted photocatalytic CO2 reduction to CH3OH, J. Colloid. Surface. A. 705 (2025) 135676.

DOI: 10.2139/ssrn.4958122

Google Scholar

[3] Z.X. Lin, J.Y. Zhang, Z. Xiong, Y.C. Zhao, Enhanced photocatalytic CO2 reduction in a twin reactor by separating triphase CO2 reduction and water oxidation reactions, J. Chem. Eng. 507 (2025) 160734.

DOI: 10.1016/j.cej.2025.160734

Google Scholar

[4] Y. Zhao, H.H. Wang, L. Zeng, L.M. Huang, Understanding the roles of Ionic liquids in photocatalytic CO2 reduction, J. Mater. Chem. A. 8 (2025) 5546-5560.

DOI: 10.1039/d4ta07837c

Google Scholar

[5] J. Kaur, S.C. Peter, Two-Dimensional Perovskites for Photocatalytic CO2 Reduction, J. Angewandte. Chemie. 2025 e202418708.

Google Scholar

[6] Z.T. Zhang, G.Y. Yi, P. Li, X.X. Zhang, H.Y. Fan, X.D. Wang, C.X. Zhang, Y.L. Zhang, Engineering approach toward catalyst design for solar photocatalytic CO2 reduction: A critical review, J. Int. Energ. Res. 45 (2021) 9895-9913.

DOI: 10.1002/er.6603

Google Scholar

[7] T.Y. Li, P. Wang, M. He, T.B. Zhang, C. Yang, Z.X. Li, Metal-organic frameworks for photocatalytical carbon dioxide reduction reaction, J. Coordin. Chem. Rev. 521 (2024) 216179.

DOI: 10.1016/j.ccr.2024.216179

Google Scholar

[8] J.L. Ortiz Quiñonez, U. Pal, Interface engineered metal oxide heterojunction nanostructures in photocatalytic CO2 reduction: Progress and prospects, J. Coordin. Chem. Rev. 516 (2024) 215967.

DOI: 10.1016/j.ccr.2024.215967

Google Scholar

[9] Z. Jiang, M.N. Guo, Z.Q. Yang, R.M. Fang, Z.Q. Wang, J.Y. Ran, Dioxygen atom co-doping g-C3N4 for boosted photoreduction activity of CO2 and mechanistic investigation, J. Mater. Chem. A. 12 (2024) 11591-11601.

DOI: 10.1039/d4ta00156g

Google Scholar

[10] Y.P. Zou, Y.D. Shen, P.P. Gao, L. Liu, X.L. Chen, S.M. Sun, Q. An, Enhanced selective photocatalytic CO2 reduction to CO on AuPd decorated Bi2O2.33 nanosheets, J. Environ. Chem. Eng. 12 (2024) 112742.

DOI: 10.1016/j.jece.2024.112742

Google Scholar

[11] Z.A. Shang, X.T. Feng, G.Z. Chen, R. Qin, Y.H. Han, Recent Advances on Single-Atom Catalysts for Photocatalytic CO2 Reduction, J. Small. 28 (2023) 04975.

DOI: 10.1002/smll.202304975

Google Scholar

[12] Q.S. Wang, Y.C. Yuan, C.F. Li, Z.R. Zhang, C. Xia, W.G. Pan, L. Liu, R.T. Guo, Carbon quantum dot-modified TiO2/SrTiO3 heterojunction for boosting photocatalytic CO2 reduction, J. Renew. Energ. 231 (2024) 120997.

DOI: 10.1016/j.renene.2024.120997

Google Scholar

[13] F.F. Tao, Y.L. Dong, L.G. Yang, NiO/g-C3N4 quantum dots for photocatalytic CO2 reduction, J. Appl. Surf. Sci. 638 (2023) 158044.

DOI: 10.1016/j.apsusc.2023.158044

Google Scholar

[14] F.X. Zhao, X.Y. Li, M.X. Zuo, Y.S. Liang, P.F. Qin, H. Wang, Z.B. Wu, L. Luo, C. Liu, L. Leng, Preparation of photocatalysts decorated by carbon quantum dots (CQDs) and their applications: A review, J. Environ. Chem. Eng. 11 (2023) 108487.

DOI: 10.1016/j.jece.2023.109487

Google Scholar

[15] R.M.S. Sendao, J.C.G. Esteves da Silva, L. Pinto da Silva, Applications of Fluorescent Carbon Dots as Photocatalysts: A Review, J. Catalysts. 13 (2023) 179.

DOI: 10.3390/catal13010179

Google Scholar

[16] Z.D. Xu, X. Su, P.H. Yang, J.B. Zhong, M.J. Li, Efficient photocatalytic CO2 and Cr (VI) reduction on carbon quantum dots/carbon nitride heterojunctions, J. Fuel. 381 (2025) 133285.

DOI: 10.1016/j.fuel.2024.133285

Google Scholar

[17] D. Kurniawan, H.Z. Xia, L.M. Dai, K. Ostriov, W.H. Chiang, Zero-dimensional nano-carbons: Synthesis, properties, and applications, J. Appl. Phys. Rev. 11 (2024) 021311.

DOI: 10.1063/5.0187310

Google Scholar

[18] D. Xu, C.L. Yu, X.L. Peng, H. Yan, Y.B. Zhang, Recent advances in carbon quantum dot photocatalysis, J. Res. Chem. Intermediat. 50 (2024) 4597-4617.

DOI: 10.1007/s11164-024-05389-0

Google Scholar

[19] Z. Liu, Z.J. Wang, S.J. Qing, N.N. Xue, S.P. Jia, L. Zhang, L. Li, N. Li, L.Y. Shi, J.Z. Chen, Improving methane selectivity of photo-induced CO2 reduction on carbon dots through modification of nitrogen-containing groups and graphitization, J. Appl. Catal. B: Environ. Energy. 232 (2018) 86-92.

DOI: 10.1016/j.apcatb.2018.03.045

Google Scholar

[20] F.C. Sun, H. Maimaiti, Y.E. Liu, A. Awati, Preparation and photocatalytic CO2 reduction performance of silver nanoparticles coated with coal-based carbon dots, J. Energy Res. 42 (2018) 4458-4469.

DOI: 10.1002/er.4191

Google Scholar

[21] S. Fang, Y. Xia, K.L. Lv, Q. Li, J. Sun, M. Li, Effect of carbon-dots modification on the structure and photocatalytic, J. Appl. Catal. B: Environ. Energy. 185 (2016) 225-232.

DOI: 10.1016/j.apcatb.2015.12.025

Google Scholar

[22] N. Tejwan, A.K. Saini, A. Sharma, T. Abhishek Singh, N. Kumar, J. Das, Metal-doped and hybrid carbon dots: A comprehensive review on their synthesis and biomedical applications, J. Control. Release. 330 (2021) 132-150.

DOI: 10.1016/j.jconrel.2020.12.023

Google Scholar

[23] L.P. Lin, Y.X. Luo, P.Y. Tsai, J.J. Wang, X, Chen, Metal ions doped carbon quantum dots: synthesis, physicochemical properties, and their applications, J. Trends. Anal. Chem. 103 (2018) 87-101.

DOI: 10.1016/j.trac.2018.03.015

Google Scholar

[24] Y.Q. Dang, B.N. Li, X.Y. Feng, J. Jia, K.K. Li, Y.T. Zhang, Preparation of Iron‐Doped Carbon Dots and Their Application in Photocatalytic Reduction of Carbon Dioxide, J. ChemPhotoChem. 7 (2023) e202200156.

DOI: 10.1002/cptc.202200156

Google Scholar

[25] J. Gao, C.Y. Xu, Y. Hu, F. Zhao, C.X. Shao, Y. Zhao, S. Chen, L.T. Qu, Unusual assembly and conversion of graphene quantum dots into crystalline graphite nanocapsules, J. Chem. Asian. 12 (2017) 1272-1276.

DOI: 10.1002/asia.201700297

Google Scholar

[26] A.B. Bourlinos, A.K. Rathi, M.B. Gawande, K. Hola, A. Goswami, S. Kalytchuk, M.A. Karakassides, A. Kouloumois, D. Goswami, Y. Deligiannakis, E.P. Giannelis, R. Zboril, Fe (III)-functionalized carbon dots-Highly efficient photoluminescence redox catalyst for hydrogenations of olefins and decomposition of hydrogen peroxide, J. Appl. Mater. Today. 7 (2017) 179-184.

DOI: 10.1016/j.apmt.2017.03.002

Google Scholar

[27] T.H. Hu, Z.S. Yin, J.W. Guo, C. Wang, Synthesis of Fe nanoparticles on polyaniline covered carbon nanotubes for oxygen reduction reaction, J. Power. Sources. 272 (2014) 661-671.

DOI: 10.1016/j.jpowsour.2014.08.124

Google Scholar

[28] N. Liu, M.Q. Tang, J.X. Wu, L. Tang, W.Y. Huang, Q.T. Li, J.Q. Lei, X.D. Zhang, L. Wang, Boosting visible‐light photocatalytic performance for CO2 reduction via hydroxylated graphene quantum dots sensitized MIL‐101 (Fe), J. Adv. Mater. Interfaces. 7 (2020) 2000468.

DOI: 10.1002/admi.202000468

Google Scholar

[29] L.H. Shi, L. Li, X.F. Li, G.M. Zhang, Y. Zhang, C. Dong, S.M. Shuang, Excitation-independent yellow-fluorescent nitrogen-doped carbon nanodots for biological imaging and paper-based sensing, J. Sensor. Actuat. B: Chem. 251 (2017) 234-241.

DOI: 10.1016/j.snb.2017.05.065

Google Scholar

[30] Z.H. Liu, M.X. Ji, J.Z. Zhao, Y. Zhang, X. Sun, Y.F. Shao, H.M. Li, S. Yin, J.X. Xia, Dual modulation steering electron reducibility and transfer of bismuth molybdate nanoparticle to boost carbon dioxide photoreduction to carbon monoxide, J. Colloid. Interface. Sci. 610 (2022) 518-526.

DOI: 10.1016/j.jcis.2021.11.096

Google Scholar

[31] S.M. Li, K. Ji, M. Zhang, C.S. He, J. Wang, Z.Q. Li, Boosting the photocatalytic CO2 reduction of metal-organic frameworks by encapsulating carbon dots, J. Nanoscale. 12 (2020) 9533-9540.

DOI: 10.1039/d0nr01696a

Google Scholar

[32] S. Sahu, Y.M. Liu , P. Wang, C.E. Bunker, K.A. Shiral Fernando, W.K. Lewis, E.A. Guliants, F. Yang, J.P. Wang, Y.P. Sun, Visible-light photoconversion of carbon dioxide into organic acids in an aqueous solution of carbon dots, J. Langmuir. 30 (2014) 8631-8636.

DOI: 10.1021/la5010209

Google Scholar

[33] X.Y. Kong, W.L. Tan, B.J. Ng, S.P. Chai, A.R. Mohamed, Harnessing Vis-NIR broad spectrum for photocatalytic CO2 reduction over carbon quantum dots-decorated ultrathin Bi2WO6 nanosheets, J. Nano. Research. 10 (2017) 1720-1731.

DOI: 10.1007/s12274-017-1435-4

Google Scholar

[34] Y.O. Wang, X. Liu, X.Y. Han, R. Godin, J.L. Chen, W.Z. Zhou, C.R. Jiang, J.F. Thompson, K.B. Mustafa, S.A. Shevlin, J.R. Durrant, Z.X. Guo, J.W. Tang, Unique hole-accepting carbon-dots promoting selective carbon dioxide reduction nearly 100% to methanol by pure water, J. Nat. Commun. 11 (2020) 2531.

DOI: 10.1038/s41467-020-16227-3

Google Scholar

[35] L.Y. Lin, S. Kavadiya, B.B. Karakocak, Y. Nie, R. Raliya, S.T. Wang, M.Y. Berezin, P. Biswas, ZnO1−x/carbon dots composite hollow spheres: Facile aerosol synthesis and superior CO2 photoreduction under UV, visible and near-infrared irradiation, J. Appl. Catal. B: Environ. Energy. 230 (2018) 36-48.

DOI: 10.1016/j.apcatb.2018.02.018

Google Scholar

[36] H.T. Li, X.Y. Zhang, D.R. MacFarlane, Carbon quantum dots/Cu2O heterostructures for solar-light-driven conversion of CO2 to methanol, J. Adv. Energy. Mater. 5 (2015) 1401077.

DOI: 10.1002/aenm.201570024

Google Scholar

[37] W.J. Sun, X.Y. Meng, C.J. Xu, J.Y. Yang, X.M. Liang, Y.J. Dong, C.Z. Dong, Y. Ding, Amorphous CoOx coupled carbon dots as a spongy porous bifunctional catalyst for efficient photocatalytic water oxidation and CO2 reduction, J. Chinese. Catal. 41 (2020) 1826-1836.

DOI: 10.1016/s1872-2067(20)63646-4

Google Scholar

[38] Z.K. Liu, W.D. Hou, H.Z. Guo, Z.M. Wang, L. Wang, M.H. Wu, Functional group modulation in carbon quantum dots for accelerating photocatalytic CO2 reduction, J. ACS. Appl. Mater. Interfaces. 15 (2023) 33868-33877.

DOI: 10.1021/acsami.3c05440

Google Scholar

[39] Q. Li, S.C. Wang, Z.X. Sun, Q.J. Tang, Y.Q. Liu, L.Z. Wang, H.Q. Wang, Z.B. Wu, Enhanced CH4 selectivity in CO2 photocatalytic reduction over carbon quantum dots decorated and oxygen doping g-C3N4, J. Nano. Research. 12 (2019) 2749-2759.

DOI: 10.1007/s12274-019-2509-2

Google Scholar

[40] Y.O. Wang, R. Godin, J.R. Durrant, J.W. Tang, Efficient hole trapping in carbon dot/oxygen-modified carbon nitride heterojunction photocatalysts for enhanced methanol production from CO2 under neutral conditions, J. Angew. Chem. 60 (2021) 20811-20816.

DOI: 10.1002/anie.202105570

Google Scholar