[1]
Rechem, D., Khaial, A., Souifi, A., Djeffal, F.: Effect of annealing time on the performance of tin oxide thin films ultraviolet photodetectors. Thin Solid Films 623, 1–7 (2017)
DOI: 10.1016/j.tsf.2016.12.035
Google Scholar
[2]
K Selma, B Salima, B Seddik, R Djamil, and H Lazhar, Investigation of UV photosensor properties of Al-doped SnO2 thin films deposited by sol-gel dip-coating method, J. Semicond., 2023, 44(3)
DOI: 10.1088/1674-4926/44/3/032801
Google Scholar
[3]
L.K. Wang, J.J. Chen, J.Y. Yu, H.L. Zhao and J.K. Yang, Highly textured spray-deposited SnO2: F filmswith high haze for solar cells, Vacuum.169, 108879 (2019)
DOI: 10.1016/j.vacuum.2019.108879
Google Scholar
[4]
V. Doni Pon, K.S. Joseph Wilson, K. Hariprasad, V. Ganesh, H. Elhosiny Ali, H. Algarni, I.S. Yahia, Enhancement of optoelectronic properties of ZnO thin films by Al doping for photodetector applications, Superlattices and Microstructures 151, (2021)
DOI: 10.1016/j.spmi.2020.106790
Google Scholar
[5]
N. Djebbari, D. Bouras, H. Farh, Effect of doping with manganese and zinc on the structural, morphological, optical and photocatalytic properties of NiO, Applied Physics A (2022)
DOI: 10.1007/s00339-022-06002-0
Google Scholar
[6]
S-H Kim, W-j Cho, Enhancement of Electrical Properties of Sol–Gel Indium–Tin–Oxide Films by Microwave Irradiation and Plasma Treatment, Micromachines, 12(10), 1167 (2021)
DOI: 10.3390/mi12101167
Google Scholar
[7]
Khan A F, Mehmood M, Aslam M, et al. Characteristics of electron beam evaporated nanocrystalline SnO2 thin films annealed in air.Appl Surf Sci, 256, 2252 (2010)
DOI: 10.1016/j.apsusc.2009.10.047
Google Scholar
[8]
T Amakali and all, Structural and Optical Properties of ZnO Thin Films Prepared by Molecular Precursor and Sol–Gel Methods, Crystals 10(2), 132, (2020)
DOI: 10.3390/cryst10020132
Google Scholar
[9]
T Amakali and all, Structural and Optical Properties of ZnO Thin Films Prepared by Molecular Precursor and Sol–Gel Methods, Crystals 10(2), 132, (2020)
DOI: 10.3390/cryst10020132
Google Scholar
[10]
Ziyan H, Xu Z, Xiaoquin W, et al. Solution-Processed Silicon doped Tin Oxide thin films and thin films transistors based on tetraethyl orthosilicate. Membranes 12(6), 590.1-14 (2022)
DOI: 10.3390/membranes12060590
Google Scholar
[11]
Venkateswara Reddy, P., Venkatramana Reddy, S., Sankra Reddy, B.: Synthesis and properties of (Ni, Al) co-doped nanoparticles. J. Mater. Sci.: Mater. Electron. 27, 10712–10719 (2016)
DOI: 10.1007/s10854-016-5172-3
Google Scholar
[12]
A. Chowdhury, D.W. Kang, M. Isshiki, T. Oyama, H. Odaka, P. Sichanugrist, M. Konagai, Sol. Energ. Mater. Sol. Cells 140, 126–133 (2015)
DOI: 10.1016/j.solmat.2015.04.003
Google Scholar
[13]
Lijuan Ye and all, Carbon-doped ZnO thin films: A transparent conductive oxide for application in solar-blind photodetectors, Appl. Phys. Lett. 125, 012104 (2024)
DOI: 10.1063/5.0218475
Google Scholar
[14]
J. Miao, T. Fan, Flexible and stretchable transparent conductive graphene-based electrodes for emerging wearable electronics, carbon, 202 P1, 495-527,(2023)
DOI: 10.1016/j.carbon.2022.11.018
Google Scholar
[15]
C. Li, M. S. Lv, X. F. Zhang et al , Graphitic carbon doped Sn02 nanosheets wrapped tubes for chemiresistivi ppb-level nitric oxide sensors operated near room temperature , Sens. Actuators B 374, 132822 (2023)
DOI: 10.1016/j.snb.2022.132822
Google Scholar
[16]
G. Turgut, E. Sonmez, S. Aydın, R. Dilber and U. Turgut, The effect of Mo and F double doping on structural, morphological, electrical and optical properties of spray deposited SnO2 thin films, Ceram. Inter. Vol. 40, p.12891–12898, (2014)
DOI: 10.1016/j.ceramint.2014.04.148
Google Scholar
[17]
S.E. Mirsalary and E.S. Iranizad, The effect of Cu doping on LPG response of the SnO2 nanostructure layer, Advanced Materials Research 829, 391 – 395, (2013)
DOI: 10.4028/www.scientific.net/amr.829.391
Google Scholar
[18]
J. Li, M Yang, Y L et al: Construction of SnO2 nanoneyral network by ultrasmall selectiv NO2 detection at low temperature. Sens. Actuators B. 361, 131703 (2022)
DOI: 10.1016/j.snb.2022.131703
Google Scholar
[19]
Benouis, C.E., Benhaliba, M., Mouffak, Z., Avila-Garcia, A., Tiburcio-Silver, A., Ortega Lopez, M., Romano Trujillo, R., Ocak, Y.S.: The low resistive and transparent Al-doped SnO2 films: P-type conductivity, nanostructures and photoluminescence. J. Alloys Compd. 603, 213–223 (2014)
DOI: 10.1016/j.jallcom.2014.03.046
Google Scholar
[20]
Xu, B., Ren, X.R., Gu, G.R., Lan, L.L., Wu, B.J, Structural and optical properties of Zn doped SnO2 films prepared by DC and RF magnetron co-sputtering. Superlattices Microstruct. 89, 34–42 (2016)
DOI: 10.1016/j.spmi.2015.10.043
Google Scholar
[21]
M. M. Rahman, A. Jamal, S. B. Khan, M. Faisal, Highly sensitive ethanol chemical sensor based on Ni-doped SnO2 nanostructure materials, Biosensors and Bioelectronics, 28(1), pp.127-134, (2011)
DOI: 10.1016/j.bios.2011.07.024
Google Scholar
[22]
S.C. Ray, M.K. Karanjai, D. Dasgupta, Preparation and study of doped and undoped tin dioxide films by the open-air chemical vapor deposition technique, Thin Solid Films 307 221, (1997)
DOI: 10.1016/s0040-6090(97)00268-x
Google Scholar
[23]
T.W. Kim, D.U. Lee, Y.S. Yoon, Microstructural electrical, and optical properties of SnO2 nanocrystalline thin films grown on InP (100) substrates for applications as gas sensor devices, J. Appl. Phys. 88 3759, (2000)
DOI: 10.1063/1.1288021
Google Scholar
[24]
G. Turgut, K. Thirumurugan, K. Ravichandran, Investigations on the crystalline, topographic, electrical and optical characteristics of doubly doped (Si + F) SnO2 films deposited using spray pyrolysis technique, Superlattices and Microstructures, 86, pp.186-197, (2015)
DOI: 10.1016/j.spmi.2015.07.005
Google Scholar
[25]
V. Craciun, J. Elders, J.G.E. Gardeniers, Ian W. Boyd, Characteristics of high quality ZnO thin films deposited by pulsed laser deposition, Appl. Phys. Lett. 65-23 2963, (1994)
DOI: 10.1063/1.112478
Google Scholar
[26]
N. Guermat, W. Darenfad, K. Mirouh, N. Bouarissa, M. Khalfallah, and A. Herbadji, Effects of zinc doping on structural, morphological, optical and electrical properties of SnO2 thin films, Eur. Phys. J. Appl. Phys. vol. 97, p.14, (2022)
DOI: 10.1051/epjap/2022210218
Google Scholar
[27]
M. Khalfallah, N. Guermat, W. Daranfed, N. Bouarissa, and H. Bakhti, ''Hydrophilic nickel doped porous SnO2 thin films prepared by spray pyrolysis'', Phys. Scr. vol. 95, p.095805, (2020)
DOI: 10.1088/1402-4896/aba8c5
Google Scholar
[28]
H.S. Akkera, P. Sivakumar, Y. Bitla, V. Ganesh, N. Kambhala, C.S. Naveen, T.R.K. Reddy, G.S. Reddy, Structural, electrical, and optical properties of rare-earth Sm3+ doped SnO2 transparent conducting oxide thin films for optoelectronic device applications: Synthesized by the spin coating method, Phys. B: Condens. Matter. 638, 413839 (2022)
DOI: 10.1016/j.optmat.2022.112993
Google Scholar
[29]
I. Apostolova, A. Apostolov, and J. Wesselinowa, Band Gap Tuning in Transition Metal and Rare-Earth-Ion-Doped TiO2, CeO2, and SnO2 Nanoparticles. Nanomaterials, 13(1), 145, (2023)
DOI: 10.3390/nano13010145
Google Scholar
[30]
Sujatha K, Seethalakshmi T, Sudha A P, et al. Photocatalytic activity of pure, Zn doped and surfactants assisted Zn doped SnO2 nanoparticles for degradation of cationic dye. Nano Struct Nano Objects, 18, 100305, (2019)
DOI: 10.1016/j.nanoso.2019.100305
Google Scholar
[31]
L. Xu and X. Li: Influence of Fe-doping on the structural and optical properties of ZnO thin films prepared by sol–gel method. J. Cryst. Growth 312, 851 (2010)
DOI: 10.1016/j.jcrysgro.2009.12.062
Google Scholar
[32]
J.H. Lee and B.O. Park: Transparent conducting ZnO: Al, in and Sn thin films deposited by the sol–gel method. Thin Solid Films 426, 94 (2003).
DOI: 10.1016/s0040-6090(03)00014-2
Google Scholar
[33]
H. Sh. Akkera, V Mann, B. N. Varalakshmi, M Ploloju, N Kambhala, and G Venkatesh, Effect of Sr-doped on physical and photoluminescence properties of SnO2 transparent conducting oxide thin films, Materials Science: Materials in Electronics, (2023)
DOI: 10.1007/s10854-023-10473-z
Google Scholar
[34]
Y. Bouznit, A. Henni, Characterization of Sb doped SnO2 films prepared by spray technique and their application to photocurrent generation, Mater. Chem. Phys. 233, 242–248 (2019)
DOI: 10.1016/j.matchemphys.2019.05.072
Google Scholar
[35]
M.A.Y. Barakat, M. Shaban, A.M.E. Sayed, Structural, ultrasonic and spectroscopic studies of tin oxide thin films; effect of Ir and (Ni, Ir) double doping, Mater. Res.Express 5, 066407 (2018)
DOI: 10.1088/2053-1591/aac80a
Google Scholar
[36]
L.P. Singh, N.M. Luwang, S.K. Srivastava, Luminescence and photocatalytic studies of Sm3+ ion doped SnO2 nanoparticles, New J. Chem. 38,115–121 (2014).
DOI: 10.1039/c3nj00759f
Google Scholar
[37]
M. Ajili, M. Castagné, and N. Kamoun Turki, "Spray solution flow rate effect on growth, optoelectronic characteristics and photoluminescence of SnO2: F thin films for photovoltaic application," Optik, vol. 126, no. 7-8, p.708–714, (2015)
DOI: 10.1016/j.ijleo.2015.02.039
Google Scholar
[38]
S. Khodja, T. Touam, A. Chelouche, and F. Boudjouan: Effects of stabilizer ratio on structural, morphological, optical and waveguide properties of ZnO nano-structured thin films by a sol–gel process. Superlattices Microstruct. 75, 485 (2014).
DOI: 10.1016/j.spmi.2014.08.010
Google Scholar
[39]
Ahmed S F, Ghosh P K, Khan S, et al. Low-macroscopic field emission from nanocrystalline Al doped SnO2 thin films synthesized by Sol-gel technique. Appl Phys A, 86, 139, (2007).
DOI: 10.1007/s00339-006-3734-6
Google Scholar
[40]
Yu Chen, Jiageng Xu, Shaoxiong Xie, Zhi Tan, Rui Nie, Zhongwei Guan, Qingyuan Wang, and Jianguo Zhu Ion, Doping Effects on the Lattice Distortion and Interlayer Mismatch of Aurivillius-Type Bismuth Titanate Compounds, Materials, 11(5), 821, (2018).
DOI: 10.3390/ma11050821
Google Scholar
[41]
Dhiman, M., Bhukal, S., Chudasama, B. et al. Impact of metal ions (Cr3+, Co2+, Ni2+, Cu2+ and Zn2+) substitution on the structural, magnetic and catalytic properties of substituted Co–Mn ferrites synthesized by sol–gel route. J Sol-Gel Sci Technol 81, 831–843 (2017).
DOI: 10.1007/s10971-016-4232-8
Google Scholar
[42]
F.E. Ghodsi J. Mazloom, Optical, electrical and morphological properties of p-type Mn-doped SnO2 nanostructured thin films prepared by sol–gel process, Appl Phys A, 108, 693–700, (2012)
DOI: 10.1007/s00339-012-6952-0
Google Scholar
[43]
S. Safa, S. Mokhtari, A. Khayatian, R. Azimirad, Improving ultraviolet photodetection of ZnO nanorods by Cr doped ZnO encapsulation process, Opt. Com. 413 131-135, (2018)
DOI: 10.1016/j.optcom.2017.12.038
Google Scholar
[44]
Soci, C., Zhang, A., Xiang, B., Dayeh, S.A., Aplin, D.P.R., Park, J., Bao, X.Y., Lo, Y.H., Wang, D. : ZnO nanowire UV photodetectors with high internal gain. Nano Lett., 7 1003– 1009, (2007)
DOI: 10.1021/nl070111x
Google Scholar
[45]
Y.J. Yoon, K.S. Park, J.H. Heo, J.G. Park, S. Nahm, K.J. choi, Synthesis of ZnXCd1-XSe (06X61) alloyed nanowires for variable wave length photodetectors. Mater. Chem., 20 2386– 2390, (2010)
DOI: 10.1039/B917531H
Google Scholar
[46]
J. B. Rodriguez, E. Plis, G. Bishop, Y. D. Sharma, H. Kim, L. R. Dawson, & S. Krishna, n B n Structure Based on InAs/GaSb Type-II Strained Layer Superlattices. Applied Physics Letters, 91 91–93, (2007)
DOI: 10.1063/1.2760153
Google Scholar
[47]
L.X. Qian, Y. Wang, Z.H. Wu, T. Sheng, X.Z. Liu, β-Ga2O3 solar-blind deep-ultraviolet photodetector based on annealed sapphire substrate. 140 106-110, (2017)
DOI: 10.1016/j.vacuum.2016.07.039
Google Scholar
[48]
F. Abbasi, F. Zahedi, M. h. Yousef, Performance Improvement of UV Photodetectorsusing Cd-doped ZnO Nanostructures, Research Article. (2021).
DOI: 10.21203/rs.3.rs-328527/v1
Google Scholar
[49]
V. S. Bhati, S. Ranwa, M. Fanetti, M. Valant, M. Kumar, Efficient hydrogen sensor based on Ni-doped ZnO nanostructures by RF sputtering, Sens. Act. B: Chem, 255 588- 597 (2018).
DOI: 10.1016/j.snb.2017.08.106
Google Scholar