Innovative Development and Characterization of Ni and Zn Co-Doped SnO2 Thin Films via Dip-Coating for Cutting-Edge UV Photodetectors

Article Preview

Abstract:

In this recent study, thin films of pure tin oxide (SnO2) denoted by TO and tin oxide doped with nickel (Ni) and zinc (Zn) at varying concentrations of 5 wt.%, 10 wt.%, and 15 wt.% were developed and characterized on ordinary glass substrates. The deposition of the films was conducted using the sol-gel technique (Dip-coating). These films are referred to as (Ni-Zn) co-doped tin oxide (NZTO) films that can be used in diverse applications such as gas and UV sensors. The effect of Ni/Zn co-doping on the structural, morphological, optical, and electrical properties of undoped SnO2 was investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and ultraviolet-visible (UV-Vis) spectroscopy. The electrical properties were further examined using the quadruple method. XRD analysis revealed that all samples were polycrystalline with a rutile-type tetragonal crystal structure, predominantly oriented along the (110) plane, but changed to (100) and (200) orientations with high doping contents. The grain size values exhibited a decreasing tendency with increasing co-doping content. The SEM images indicated that the films possessed a porous surface and were made up of well-defined and homogenously dispersed spherical and polyhedron-shaped nanoparticles, which were influenced by doping with Ni and Zn. The FTIR study showed that all the films exhibit the Sn-O-Sn, Sn-O, Sn-OH, and H-O vibration peaks. The NZTO films enhanced the crystal structure and raised the optical energy gap from 4.03 eV for TO to 4.09 eV for NZTO. The thickness also increased from d = 353.44 nm for pure TO films to d = 448.43 nm for films doped with 15% NZTO. The highest transmittance value was observed to be 93% for TO within the visible range. Hall effect measurements indicated that TO exhibited n-type conductivity and p-type conductivity when doped with 5%, 10%, or 15% NZTO. This allows photodetectors based on TO to show great sensitivity to UV light.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

9-25

Citation:

Online since:

June 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Rechem, D., Khaial, A., Souifi, A., Djeffal, F.: Effect of annealing time on the performance of tin oxide thin films ultraviolet photodetectors. Thin Solid Films 623, 1–7 (2017)

DOI: 10.1016/j.tsf.2016.12.035

Google Scholar

[2] K Selma, B Salima, B Seddik, R Djamil, and H Lazhar, Investigation of UV photosensor properties of Al-doped SnO2 thin films deposited by sol-gel dip-coating method, J. Semicond., 2023, 44(3)

DOI: 10.1088/1674-4926/44/3/032801

Google Scholar

[3] L.K. Wang, J.J. Chen, J.Y. Yu, H.L. Zhao and J.K. Yang, Highly textured spray-deposited SnO2: F filmswith high haze for solar cells, Vacuum.169, 108879 (2019)

DOI: 10.1016/j.vacuum.2019.108879

Google Scholar

[4] V. Doni Pon, K.S. Joseph Wilson, K. Hariprasad, V. Ganesh, H. Elhosiny Ali, H. Algarni, I.S. Yahia, Enhancement of optoelectronic properties of ZnO thin films by Al doping for photodetector applications, Superlattices and Microstructures 151, (2021)

DOI: 10.1016/j.spmi.2020.106790

Google Scholar

[5] N. Djebbari, D. Bouras, H. Farh, Effect of doping with manganese and zinc on the structural, morphological, optical and photocatalytic properties of NiO, Applied Physics A (2022)

DOI: 10.1007/s00339-022-06002-0

Google Scholar

[6] S-H Kim, W-j Cho, Enhancement of Electrical Properties of Sol–Gel Indium–Tin–Oxide Films by Microwave Irradiation and Plasma Treatment, Micromachines, 12(10), 1167 (2021)

DOI: 10.3390/mi12101167

Google Scholar

[7] Khan A F, Mehmood M, Aslam M, et al. Characteristics of electron beam evaporated nanocrystalline SnO2 thin films annealed in air.Appl Surf Sci, 256, 2252 (2010)

DOI: 10.1016/j.apsusc.2009.10.047

Google Scholar

[8] T Amakali and all, Structural and Optical Properties of ZnO Thin Films Prepared by Molecular Precursor and Sol–Gel Methods, Crystals 10(2), 132, (2020)

DOI: 10.3390/cryst10020132

Google Scholar

[9] T Amakali and all, Structural and Optical Properties of ZnO Thin Films Prepared by Molecular Precursor and Sol–Gel Methods, Crystals 10(2), 132, (2020)

DOI: 10.3390/cryst10020132

Google Scholar

[10] Ziyan H, Xu Z, Xiaoquin W, et al. Solution-Processed Silicon doped Tin Oxide thin films and thin films transistors based on tetraethyl orthosilicate. Membranes 12(6), 590.1-14 (2022)

DOI: 10.3390/membranes12060590

Google Scholar

[11] Venkateswara Reddy, P., Venkatramana Reddy, S., Sankra Reddy, B.: Synthesis and properties of (Ni, Al) co-doped nanoparticles. J. Mater. Sci.: Mater. Electron. 27, 10712–10719 (2016)

DOI: 10.1007/s10854-016-5172-3

Google Scholar

[12] A. Chowdhury, D.W. Kang, M. Isshiki, T. Oyama, H. Odaka, P. Sichanugrist, M. Konagai, Sol. Energ. Mater. Sol. Cells 140, 126–133 (2015)

DOI: 10.1016/j.solmat.2015.04.003

Google Scholar

[13] Lijuan Ye and all, Carbon-doped ZnO thin films: A transparent conductive oxide for application in solar-blind photodetectors, Appl. Phys. Lett. 125, 012104 (2024)

DOI: 10.1063/5.0218475

Google Scholar

[14] J. Miao, T. Fan, Flexible and stretchable transparent conductive graphene-based electrodes for emerging wearable electronics, carbon, 202 P1, 495-527,(2023)

DOI: 10.1016/j.carbon.2022.11.018

Google Scholar

[15] C. Li, M. S. Lv, X. F. Zhang et al , Graphitic carbon doped Sn02 nanosheets wrapped tubes for chemiresistivi ppb-level nitric oxide sensors operated near room temperature , Sens. Actuators B 374, 132822 (2023)

DOI: 10.1016/j.snb.2022.132822

Google Scholar

[16] G. Turgut, E. Sonmez, S. Aydın, R. Dilber and U. Turgut, The effect of Mo and F double doping on structural, morphological, electrical and optical properties of spray deposited SnO2 thin films, Ceram. Inter. Vol. 40, p.12891–12898, (2014)

DOI: 10.1016/j.ceramint.2014.04.148

Google Scholar

[17] S.E. Mirsalary and E.S. Iranizad, The effect of Cu doping on LPG response of the SnO2 nanostructure layer, Advanced Materials Research 829, 391 – 395, (2013)

DOI: 10.4028/www.scientific.net/amr.829.391

Google Scholar

[18] J. Li, M Yang, Y L et al: Construction of SnO2 nanoneyral network by ultrasmall selectiv NO2 detection at low temperature. Sens. Actuators B. 361, 131703 (2022)

DOI: 10.1016/j.snb.2022.131703

Google Scholar

[19] Benouis, C.E., Benhaliba, M., Mouffak, Z., Avila-Garcia, A., Tiburcio-Silver, A., Ortega Lopez, M., Romano Trujillo, R., Ocak, Y.S.: The low resistive and transparent Al-doped SnO2 films: P-type conductivity, nanostructures and photoluminescence. J. Alloys Compd. 603, 213–223 (2014)

DOI: 10.1016/j.jallcom.2014.03.046

Google Scholar

[20] Xu, B., Ren, X.R., Gu, G.R., Lan, L.L., Wu, B.J, Structural and optical properties of Zn doped SnO2 films prepared by DC and RF magnetron co-sputtering. Superlattices Microstruct. 89, 34–42 (2016)

DOI: 10.1016/j.spmi.2015.10.043

Google Scholar

[21] M. M. Rahman, A. Jamal, S. B. Khan, M. Faisal, Highly sensitive ethanol chemical sensor based on Ni-doped SnO2 nanostructure materials, Biosensors and Bioelectronics, 28(1), pp.127-134, (2011)

DOI: 10.1016/j.bios.2011.07.024

Google Scholar

[22] S.C. Ray, M.K. Karanjai, D. Dasgupta, Preparation and study of doped and undoped tin dioxide films by the open-air chemical vapor deposition technique, Thin Solid Films 307 221, (1997)

DOI: 10.1016/s0040-6090(97)00268-x

Google Scholar

[23] T.W. Kim, D.U. Lee, Y.S. Yoon, Microstructural electrical, and optical properties of SnO2 nanocrystalline thin films grown on InP (100) substrates for applications as gas sensor devices, J. Appl. Phys. 88 3759, (2000)

DOI: 10.1063/1.1288021

Google Scholar

[24] G. Turgut, K. Thirumurugan, K. Ravichandran, Investigations on the crystalline, topographic, electrical and optical characteristics of doubly doped (Si + F) SnO2 films deposited using spray pyrolysis technique, Superlattices and Microstructures, 86, pp.186-197, (2015)

DOI: 10.1016/j.spmi.2015.07.005

Google Scholar

[25] V. Craciun, J. Elders, J.G.E. Gardeniers, Ian W. Boyd, Characteristics of high quality ZnO thin films deposited by pulsed laser deposition, Appl. Phys. Lett. 65-23 2963, (1994)

DOI: 10.1063/1.112478

Google Scholar

[26] N. Guermat, W. Darenfad, K. Mirouh, N. Bouarissa, M. Khalfallah, and A. Herbadji, Effects of zinc doping on structural, morphological, optical and electrical properties of SnO2 thin films, Eur. Phys. J. Appl. Phys. vol. 97, p.14, (2022)

DOI: 10.1051/epjap/2022210218

Google Scholar

[27] M. Khalfallah, N. Guermat, W. Daranfed, N. Bouarissa, and H. Bakhti, ''Hydrophilic nickel doped porous SnO2 thin films prepared by spray pyrolysis'', Phys. Scr. vol. 95, p.095805, (2020)

DOI: 10.1088/1402-4896/aba8c5

Google Scholar

[28] H.S. Akkera, P. Sivakumar, Y. Bitla, V. Ganesh, N. Kambhala, C.S. Naveen, T.R.K. Reddy, G.S. Reddy, Structural, electrical, and optical properties of rare-earth Sm3+ doped SnO2 transparent conducting oxide thin films for optoelectronic device applications: Synthesized by the spin coating method, Phys. B: Condens. Matter. 638, 413839 (2022)

DOI: 10.1016/j.optmat.2022.112993

Google Scholar

[29] I. Apostolova, A. Apostolov, and J. Wesselinowa, Band Gap Tuning in Transition Metal and Rare-Earth-Ion-Doped TiO2, CeO2, and SnO2 Nanoparticles. Nanomaterials, 13(1), 145, (2023)

DOI: 10.3390/nano13010145

Google Scholar

[30] Sujatha K, Seethalakshmi T, Sudha A P, et al. Photocatalytic activity of pure, Zn doped and surfactants assisted Zn doped SnO2 nanoparticles for degradation of cationic dye. Nano Struct Nano Objects, 18, 100305, (2019)

DOI: 10.1016/j.nanoso.2019.100305

Google Scholar

[31] L. Xu and X. Li: Influence of Fe-doping on the structural and optical properties of ZnO thin films prepared by sol–gel method. J. Cryst. Growth 312, 851 (2010)

DOI: 10.1016/j.jcrysgro.2009.12.062

Google Scholar

[32] J.H. Lee and B.O. Park: Transparent conducting ZnO: Al, in and Sn thin films deposited by the sol–gel method. Thin Solid Films 426, 94 (2003).

DOI: 10.1016/s0040-6090(03)00014-2

Google Scholar

[33] H. Sh. Akkera, V Mann, B. N. Varalakshmi, M Ploloju, N Kambhala, and G Venkatesh, Effect of Sr-doped on physical and photoluminescence properties of SnO2 transparent conducting oxide thin films, Materials Science: Materials in Electronics, (2023)

DOI: 10.1007/s10854-023-10473-z

Google Scholar

[34] Y. Bouznit, A. Henni, Characterization of Sb doped SnO2 films prepared by spray technique and their application to photocurrent generation, Mater. Chem. Phys. 233, 242–248 (2019)

DOI: 10.1016/j.matchemphys.2019.05.072

Google Scholar

[35] M.A.Y. Barakat, M. Shaban, A.M.E. Sayed, Structural, ultrasonic and spectroscopic studies of tin oxide thin films; effect of Ir and (Ni, Ir) double doping, Mater. Res.Express 5, 066407 (2018)

DOI: 10.1088/2053-1591/aac80a

Google Scholar

[36] L.P. Singh, N.M. Luwang, S.K. Srivastava, Luminescence and photocatalytic studies of Sm3+ ion doped SnO2 nanoparticles, New J. Chem. 38,115–121 (2014).

DOI: 10.1039/c3nj00759f

Google Scholar

[37] M. Ajili, M. Castagné, and N. Kamoun Turki, "Spray solution flow rate effect on growth, optoelectronic characteristics and photoluminescence of SnO2: F thin films for photovoltaic application," Optik, vol. 126, no. 7-8, p.708–714, (2015)

DOI: 10.1016/j.ijleo.2015.02.039

Google Scholar

[38] S. Khodja, T. Touam, A. Chelouche, and F. Boudjouan: Effects of stabilizer ratio on structural, morphological, optical and waveguide properties of ZnO nano-structured thin films by a sol–gel process. Superlattices Microstruct. 75, 485 (2014).

DOI: 10.1016/j.spmi.2014.08.010

Google Scholar

[39] Ahmed S F, Ghosh P K, Khan S, et al. Low-macroscopic field emission from nanocrystalline Al doped SnO2 thin films synthesized by Sol-gel technique. Appl Phys A, 86, 139, (2007).

DOI: 10.1007/s00339-006-3734-6

Google Scholar

[40] Yu Chen, Jiageng Xu, Shaoxiong Xie, Zhi Tan, Rui Nie, Zhongwei Guan, Qingyuan Wang, and Jianguo Zhu Ion, Doping Effects on the Lattice Distortion and Interlayer Mismatch of Aurivillius-Type Bismuth Titanate Compounds, Materials, 11(5), 821, (2018).

DOI: 10.3390/ma11050821

Google Scholar

[41] Dhiman, M., Bhukal, S., Chudasama, B. et al. Impact of metal ions (Cr3+, Co2+, Ni2+, Cu2+ and Zn2+) substitution on the structural, magnetic and catalytic properties of substituted Co–Mn ferrites synthesized by sol–gel route. J Sol-Gel Sci Technol 81, 831–843 (2017).

DOI: 10.1007/s10971-016-4232-8

Google Scholar

[42] F.E. Ghodsi J. Mazloom, Optical, electrical and morphological properties of p-type Mn-doped SnO2 nanostructured thin films prepared by sol–gel process, Appl Phys A, 108, 693–700, (2012)

DOI: 10.1007/s00339-012-6952-0

Google Scholar

[43] S. Safa, S. Mokhtari, A. Khayatian, R. Azimirad, Improving ultraviolet photodetection of ZnO nanorods by Cr doped ZnO encapsulation process, Opt. Com. 413 131-135, (2018)

DOI: 10.1016/j.optcom.2017.12.038

Google Scholar

[44] Soci, C., Zhang, A., Xiang, B., Dayeh, S.A., Aplin, D.P.R., Park, J., Bao, X.Y., Lo, Y.H., Wang, D. : ZnO nanowire UV photodetectors with high internal gain. Nano Lett., 7 1003– 1009, (2007)

DOI: 10.1021/nl070111x

Google Scholar

[45] Y.J. Yoon, K.S. Park, J.H. Heo, J.G. Park, S. Nahm, K.J. choi, Synthesis of ZnXCd1-XSe (06X61) alloyed nanowires for variable wave length photodetectors. Mater. Chem., 20 2386– 2390, (2010)

DOI: 10.1039/B917531H

Google Scholar

[46] J. B. Rodriguez, E. Plis, G. Bishop, Y. D. Sharma, H. Kim, L. R. Dawson, & S. Krishna, n B n Structure Based on InAs/GaSb Type-II Strained Layer Superlattices. Applied Physics Letters, 91 91–93, (2007)

DOI: 10.1063/1.2760153

Google Scholar

[47] L.X. Qian, Y. Wang, Z.H. Wu, T. Sheng, X.Z. Liu, β-Ga2O3 solar-blind deep-ultraviolet photodetector based on annealed sapphire substrate. 140 106-110, (2017)

DOI: 10.1016/j.vacuum.2016.07.039

Google Scholar

[48] F. Abbasi, F. Zahedi, M. h. Yousef, Performance Improvement of UV Photodetectorsusing Cd-doped ZnO Nanostructures, Research Article. (2021).

DOI: 10.21203/rs.3.rs-328527/v1

Google Scholar

[49] V. S. Bhati, S. Ranwa, M. Fanetti, M. Valant, M. Kumar, Efficient hydrogen sensor based on Ni-doped ZnO nanostructures by RF sputtering, Sens. Act. B: Chem, 255 588- 597 (2018).

DOI: 10.1016/j.snb.2017.08.106

Google Scholar