[1]
P. Vengatesh and T. S. Shyju, "Effect of substrate temperature on reactive RF magnetron sputtered SnO2thin films for photovoltaic applications," Mater. Today Proc., vol. 47, p.1035–1039, 2021.
DOI: 10.1016/j.matpr.2021.06.202
Google Scholar
[2]
O. Długosz and M. Banach, "ZnO–SnO2–Sn nanocomposite as photocatalyst in ultraviolet and visible light," Appl. Nanosci., vol. 11, no. 5, p.1707–1719, 2021.
DOI: 10.1007/s13204-021-01788-6
Google Scholar
[3]
G. Elango, S. M. Kumaran, S. S. Kumar, S. Muthuraja, and S. M. Roopan, "Green synthesis of SnO2 nanoparticles and its photocatalytic activity of phenolsulfonphthalein dye," Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 145, p.176–180, 2015.
DOI: 10.1016/j.saa.2015.03.033
Google Scholar
[4]
S. Roguai and A. Djelloul, "Elaboration, characterization and applications of SnO2, 2 %Gd-SnO2 and 2 %Gd-9 %F-SnO2 thin films for the photocatalytic degradation of MB by USP method," Inorg. Chem. Commun., vol. 138, no. December 2021, p.109308, 2022.
DOI: 10.1016/j.inoche.2022.109308
Google Scholar
[5]
T. I. Gandhi, R. R. Babu, K. Ramamurthi, and M. Arivanandhan, Effect of Mn doping on the electrical and optical properties of SnO2 thin films deposited by chemical spray pyrolysis technique, vol. 598. Elsevier B.V., 2016.
DOI: 10.1016/j.tsf.2015.12.008
Google Scholar
[6]
G. Maharana et al., "Tungsten and fluorine co-doping induced morphology change and textured growth of spray-pyrolyzed SnO2 thin films viable for photocatalytic application," Surfaces and Interfaces, vol. 42, no. PA, p.103413, 2023.
DOI: 10.1016/j.surfin.2023.103413
Google Scholar
[7]
K. Daideche, H. Lahmar, D. Lerari, and A. Azizi, "Influence of deposition potential on the electrochemical growth and photocatalysis performance of SnO2 nanostructures," Inorg. Chem. Commun., vol. 147, no. August 2022, p.110154, 2023.
DOI: 10.1016/j.inoche.2022.110154
Google Scholar
[8]
L. Vayssieres, "Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions," Adv. Mater., vol. 15, no. 5, p.464–466, 2003.
DOI: 10.1002/adma.200390108
Google Scholar
[9]
T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, and M. Grundmann, "Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section," Phys. Rev. Lett., vol. 93, no. 10, p.1–4, 2004.
DOI: 10.1103/PhysRevLett.93.103903
Google Scholar
[10]
L. Amiri et al., "Spectroscopic study and thermoelectric properties of copper sulfide thin films prepared by the flash evaporation method," J. Alloys Compd., vol. 924, p.166479, 2022.
DOI: 10.1016/j.jallcom.2022.166479
Google Scholar
[11]
K. Darowicki, S. Krakowiak, and P. Ślepski, "Selection of measurement frequency in Mott-Schottky analysis of passive layer on nickel," Electrochim. Acta, vol. 51, no. 11, p.2204–2208, 2006.
DOI: 10.1016/j.electacta.2005.04.079
Google Scholar
[12]
D. Ham, S. Oh, and H. C. Kang, "Competing phases in epitaxial SnO2 thin films deposited on sapphire(0001) substrates using radio-frequency powder sputtering," Ceram. Int., vol. 48, no. 19, p.28396–28403, 2022.
DOI: 10.1016/j.ceramint.2022.06.150
Google Scholar
[13]
S. Elmassi et al., "Effect of RF power on structural, optical and electrical properties of sputtered nickel oxide," Phys. B Condens. Matter, vol. 659, no. March, p.414853, 2023.
DOI: 10.1016/j.physb.2023.414853
Google Scholar
[14]
M. Ahmadipour, S. N. Ayub, M. F. Ain, and Z. A. Ahmad, "Structural, surface morphology and optical properties of sputter-coated CaCu3Ti4O12 thin film: Influence of RF magnetron sputtering power," Mater. Sci. Semicond. Process., vol. 66, no. March, p.157–161, 2017.
DOI: 10.1016/j.mssp.2017.04.019
Google Scholar
[15]
H. Zhang, J. Deng, Z. Pan, Z. Bai, L. Kong, and J. Wang, "Structural and optical properties of Nb-doped β-Ga2O3 thin films deposited by RF magnetron sputtering," Vacuum, vol. 146, no. 3, p.93–96, 2017.
DOI: 10.1016/j.vacuum.2017.09.033
Google Scholar
[16]
D. U. Lee, D. Y. Yun, Y. S. No, J. H. Hwang, C. H. Lee, and T. W. Kim, "Effect of applied voltage on the structural properties of SnO2 nanostuctures grown on indium-tin-oxide coated glass substrates," J. Nanosci. Nanotechnol., vol. 13, no. 11, p.7596–7599, 2013.
DOI: 10.1166/jnn.2013.7883
Google Scholar
[17]
R. Dangi, B. Basnet, M. Pandey, S. Bhusal, and B. Budhathoki, "Effect of Oxygen Vacancy on the Crystallinity and Optical Band," 2023.
DOI: 10.3390/en16062653
Google Scholar
[18]
A. Kania, M. M. Szindler, M. Szindler, and Z. Brytan, "Structure and Selected Properties of SnO2 Thin Films," 2024.
DOI: 10.3390/ma17133348
Google Scholar
[19]
H. Search, C. Journals, A. Contact, M. Iopscience, and I. P. Address, "Structural , electrical and optical properties of transparent conducting SnO 2 films : effect of the oxygen flow rate," vol. 015801, 2012.
DOI: 10.1088/0031-8949/86/01/015801
Google Scholar
[20]
A. Tchenka et al., "Effect of RF Sputtering Power and Deposition Time on Optical and Electrical Properties of Indium Tin Oxide Thin Film," Adv. Mater. Sci. Eng., vol. 2021, no. Dc, 2021.
DOI: 10.1155/2021/5556305
Google Scholar
[21]
M. Scimeca, S. Bischetti, H. K. Lamsira, R. Bonfiglio, and E. Bonanno, "Energy Dispersive X-ray ( EDX ) microanalysis : A powerful tool in biomedical research and diagnosis," vol. 62, 2018.
DOI: 10.4081/ejh.2018.2841
Google Scholar
[22]
A. Tchenka, A. Agdad, and E. Ech-Chamikh, "Determination of the thickness and optical properties by reflectance method," Infrared Phys. Technol., vol. 137, no. December 2023, p.105117, 2024.
DOI: 10.1016/j.infrared.2024.105117
Google Scholar
[23]
E. F. Rakotonarivo, C. N. Abouloula, A. Narjis, L. Nkhaili, F. Brouillette, and A. Oueriagli, "Optimization of the electrodeposition of the pure and cobalt doped copper oxide for solar cells and other applications," Phys. B Condens. Matter, vol. 609, no. December 2020, p.412783, 2021.
DOI: 10.1016/j.physb.2020.412783
Google Scholar
[24]
S. Elmassi et al., "Effect of annealing on structural, optical and electrical properties of nickel oxide thin films synthesized by the reactive radio frequency sputtering," Phys. B Condens. Matter, vol. 639, no. April, p.413980, 2022.
DOI: 10.1016/j.physb.2022.413980
Google Scholar
[25]
M. Suchea, S. Christoulakis, N. Katsarakis, T. Kitsopoulos, and G. Kiriakidis, "Comparative study of zinc oxide and aluminum doped zinc oxide transparent thin films grown by direct current magnetron sputtering," Thin Solid Films, vol. 515, no. 16 SPEC. ISS., p.6562–6566, 2007.
DOI: 10.1016/j.tsf.2006.11.151
Google Scholar
[26]
F. Cardon and W. P. Gomes, "On the determination of the flat-band potential of a semiconductor in contact with a metal or an electrolyte from the Mott-Schottky plot," J. Phys. D. Appl. Phys., vol. 11, no. 4, 1978.
DOI: 10.1088/0022-3727/11/4/003
Google Scholar
[27]
A. Ahmed, M. Naseem Siddique, U. Alam, T. Ali, and P. Tripathi, "Improved photocatalytic activity of Sr doped SnO2 nanoparticles: A role of oxygen vacancy," Appl. Surf. Sci., vol. 463, p.976–985, 2019.
DOI: 10.1016/j.apsusc.2018.08.182
Google Scholar
[28]
Q. Zhao et al., "Oxygen Vacancy Mediation in SnO2 Electron Transport Layers Enables Efficient, Stable, and Scalable Perovskite Solar Cells," J. Am. Chem. Soc., 2024.
DOI: 10.1021/jacs.4c03783
Google Scholar
[29]
M. Ayadi, O. Benhaoua, M. Sebais, et al. Effect of cerium doping on the structural, optical and photocatalytic properties of SnO2 thin films prepared by spray pyrolysis method. Mater. Res. Express 2019, 6 (7).
DOI: 10.1088/2053-1591/ab10c5
Google Scholar
[30]
D. Chu et al., "Enhanced photocatalytic properties of SnO2 nanocrystals with decreased size for ppb-level acetaldehyde decomposition," ChemCatChem, vol. 3, no. 2, p.371–377, 2011.
DOI: 10.1002/cctc.201000334
Google Scholar