Built-In n+pp+ Silicon Junction Photocathode with NiFe Layered Double Hydroxide for High-Performance Solar Hydrogen Production

Article Preview

Abstract:

This work demonstrates a highly efficient photocathode for water splitting in neutral electrolyte. It is based on a combination of the back-field p+ doped Si junction, and the nanostructured NiFe layered double hydroxide as co-catalyst. This extraordinary photoelectrochemical performance is primarily attributed to the catalyst-induced dramatic increase in active surface sites, and the suppression of hole recombination. Following the deposition of Pt nanoparticles between the Si junction and NiFe layered double hydroxide, the platinized photocathode (n+pp+ Si/Pt/NiFe LDH) exhibited an excellent photocurrent density of -4.98 mA/cm2 at 0 V versus the standard reference (RHE) in 0.5 M Na2SO4 electrolyte. The superior quality of our cathode is demonstrated by the magnitude of the photoinduced current density (after dark current correction), which approaches the theoretical maximum. This achievement is attributed to the successful construction of built-in electric fields.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

89-102

Citation:

Online since:

June 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. M. C. Ta, R. Daiyan, T. K. A. Nguyen, R. Amal, T. Tran‐Phu, A. Tricoli. Alternatives to water photooxidation for photoelectrochemical solar energy conversion and green H2 production. Adv. Energy. Mater. 12 (2022) 2201358.

DOI: 10.1002/aenm.202201358

Google Scholar

[2] H. Tang, S. He, C. Peng. A Short Progress Report on High-Efficiency Perovskite Solar Cells. Nanoscale Res. Lett. 12 (2017) 410.

DOI: 10.1186/s11671-017-2187-5

Google Scholar

[3] S. I. Leiva-Guajardo, N. Toro, E. Fuentealba, M. J. Morel, Á. Soliz, C. Portillo, F. M. Galleguillos Madrid. Contribution of Copper Slag to Water Treatment and Hydrogen Production by Photocatalytic Mechanisms in Aqueous Solutions: A Mini Review. materials 17 (2024) 5434.

DOI: 10.3390/ma17225434

Google Scholar

[4] B. Wu, T. Wang, B. Liu, H. Li, Y. Wang, S. Wang, L. Zhang, S. Jiang, C. Pei, J. Gong. Stable solar water splitting with wettable organic-layer-protected silicon photocathodes. Nat. Commun. 13 (2022) 4460.

DOI: 10.1038/s41467-022-32099-1

Google Scholar

[5] X. Meng, Z. Li, Y. Liu, Z. Wang, P. Wang, Z. Zheng, Y. Dai, B. Huang, H. Cheng, J.-H. He. Enabling unassisted solar water splitting with concurrent high efficiency and stability by robust earth-abundant bifunctional electrocatalysts. Nano Energy 109 (2023) 108296.

DOI: 10.1016/j.nanoen.2023.108296

Google Scholar

[6] R.-T. Gao, N. T. Nguyen, T. Nakajima, J. He, X. Liu, X. Zhang, L. Wang, L. Wu. Dynamic semiconductor-electrolyte interface for sustainable solar water splitting over 600 hours under neutral conditions. Sci. Adv. 9 (2023) 4589.

DOI: 10.1126/sciadv.ade4589

Google Scholar

[7] K. Feng, K. Wu, J. Fan, T. Sun, E. Liu. Ni3Se4/ZnIn2S4 S-scheme heterojunction for efficient photocatalytic H2 evolution. Materials Letters 363 (2024) 136255.

DOI: 10.1016/j.matlet.2024.136255

Google Scholar

[8] M. Sindhu, A. Sharma, K. S. Maan, V. Patel, P. P. Singh, B.-S. Nguyen, D.-V. N. Vo, V.-H. Nguyen. Nb-Ta3N5 protected with PANI nanocomposite for enhanced photocatalytic water-splitting towards hydrogen production under visible light irradiation. Materials Letters 359 (2024) 135895.

DOI: 10.1016/j.matlet.2024.135895

Google Scholar

[9] X. Sun, C. Liu, P. Zhang, L. Gong, M. Wang. Interface-engineered silicon photocathodes with a NiCoP catalyst-modified TiO2 nanorod array outlayer for photoelectrochemical hydrogen production in alkaline solution. J Power Sources 484 (2021) 229272.

DOI: 10.1016/j.jpowsour.2020.229272

Google Scholar

[10] X. Zhang, M. Wang, C. Hu, T. Li, X. Yan, P. Zhang, Z. Chen. Modification of WO3 photoanode with NiFe-LDHs nanosheets array for efficient Photoelectrocatalytic removal of tetracycline. Appl Surf Sci 622 (2023) 156977.

DOI: 10.1016/j.apsusc.2023.156977

Google Scholar

[11] H.-W. Chang, Y. Fu, W.-Y. Lee, Y.-R. Lu, Y.-C. Huang, J.-L. Chen, C.-L. Chen, W. C. Chou, J.-M. Chen, J.-F. Lee. Visible light-induced electronic structure modulation of Nb-and Ta-doped α-Fe2O3 nanorods for effective photoelectrochemical water splitting. Nanotechnology 29 (2018) 064002.

DOI: 10.1088/1361-6528/aa9d75

Google Scholar

[12] L. Xi, Q. Zhang, Z. Sun, C. Song, L. Xu. Rational design of ternary composite photoanode BiVO4/PW12/NiTsPc for improved photoelectrochemical water oxidation. Chemelectrochem 5 (2018) 2534-2541.

DOI: 10.1002/celc.201800560

Google Scholar

[13] S. Sun, Z. Wang, S. Meng, R. Yu, D. Jiang, M. Chen. Iron and chromium co-doped cobalt phosphide porous nanosheets as robust bifunctional electrocatalyst for efficient water splitting. Nanotechnology 33 (2021) 075204.

DOI: 10.1088/1361-6528/ac297e

Google Scholar

[14] J.-X. Jian, V. Jokubavicius, M. SyväJäRvi, R. Yakimova, J. Sun. Nanoporous cubic silicon carbide photoanodes for enhanced solar water splitting. ACS Nano 15 (2021) 5502-5512.

DOI: 10.1021/acsnano.1c00256

Google Scholar

[15] K. Raju, K. K. Gopalakrishnan, G. Ashokan, J. Kulandaivel. Artificial photosynthetic approach steers hydrogen evolution with bismuth selenide nanoflakes decorated silicon nanowires. Materials Letters 366 (2024) 136571.

DOI: 10.1016/j.matlet.2024.136571

Google Scholar

[16] L. Salgado-Conrado, C. Álvarez-Macías, B. Reyes-Durán. A Review of Simulation Tools for Thin-Film Solar Cells. materials 17 (2024) 5213.

DOI: 10.3390/ma17215213

Google Scholar

[17] Z. Luo, T. Wang, J. Gong. Single-crystal silicon-based electrodes for unbiased solar water splitting: current status and prospects. Chem. Soc. Rev. 48 (2019) 2158-2181.

DOI: 10.1039/c8cs00638e

Google Scholar

[18] Z. Chen, K. Fang, Y. Bu, J.-P. Ao. Development of functionalized CoOx-NiFe LDH bi-layers to improve the photoelectrochemical water oxidation property of n-Si photoanode. J Alloys Compd. 942 (2023) 168948.

DOI: 10.1016/j.jallcom.2023.168948

Google Scholar

[19] S. E. Jun, S. P. Hong, S. Choi, C. Kim, S. G. Ji, I. J. Park, S. A. Lee, J. W. Yang, T. H. Lee, W. Sohn. Boosting Unassisted Alkaline Solar Water Splitting Using Silicon Photocathode with TiO2 Nanorods Decorated by Edge‐Rich MoS2 Nanoplates. Small 17 (2021) 2103457.

DOI: 10.1002/smll.202103457

Google Scholar

[20] M. G. Kast, L. J. Enman, N. J. Gurnon, A. Nadarajah, S. W. Boettcher. Solution-deposited F: SnO2/TiO2 as a base-stable protective layer and antireflective coating for microtextured buried-junction H2-evolving Si photocathodes. ACS Appl. Mater. Interfaces 6 (2014) 22830-22837.

DOI: 10.1021/am506999p

Google Scholar

[21] L. Liu, S. Xia, Y. Diao, F. Lu, J. Tian. Enhancement of photoemission capability and electron collection efficiency of field-assisted GaN nanowire array photocathode. Nanotechnology 31 (2019) 025201.

DOI: 10.1088/1361-6528/ab468a

Google Scholar

[22] X. Zheng, Y. Liu, Y. Yang, Y. Song, P. Deng, J. Li, W. Liu, Y. Shen, X. Tian. Recent advances in cadmium sulfide-based photocatalysts for photocatalytic hydrogen evolution. Renewables 1 (2023) 39-56.

DOI: 10.31635/renewables.022.202200001

Google Scholar

[23] J. Zhao, L. Cai, H. Li, X. Shi, X. Zheng. Stabilizing silicon photocathodes by solution-deposited Ni–Fe layered double hydroxide for efficient hydrogen evolution in alkaline media. ACS Energy Lett. 2 (2017) 1939-1946.

DOI: 10.1021/acsenergylett.7b00597

Google Scholar

[24] J.-Y. Jung, J.-Y. Yu, J.-H. Lee. Dynamic Photoelectrochemical Device Using an Electrolyte-Permeable NiOx/SiO2/Si Photocathode with an Open-Circuit Potential of 0.75 V. ACS Appl. Mater. Interfaces 10 (2018) 7955-7962.

DOI: 10.1021/acsami.7b16918

Google Scholar

[25] H. Zhang, Q. Ding, D. He, H. Liu, W. Liu, Z. Li, B. Yang, X. Zhang, L. Lei, S. Jin. A p-Si/NiCoSex core/shell nanopillar array photocathode for enhanced photoelectrochemical hydrogen production. Energy Environ. Sci. 9 (2016) 3113-3119.

DOI: 10.1039/c6ee02215d

Google Scholar

[26] Y. Peng, S. Wang, Z. Liu, Z. Zhou, S. Zhou, M. Yao. Influence of parasitic optical losses on the performance of perovskite solar cells. J. Phys. D: Appl. Phys. 56 (2023).

DOI: 10.1088/1361-6463/ace1fb

Google Scholar

[27] H. J. Eggimann, J. B. Patel, M. B. Johnston, L. M. Herz. Efficient energy transfer mitigates parasitic light absorption in molecular charge-extraction layers for perovskite solar cells. Nat. Commun. 11 (2020).

DOI: 10.1038/s41467-020-19268-w

Google Scholar

[28] J. Werner, J. Geissbühler, A. Dabirian, S. Nicolay, M. Morales-Masis, S. D. Wolf, B. Niesen, C. Ballif. Parasitic Absorption Reduction in Metal Oxide-Based Transparent Electrodes: Application in Perovskite Solar Cells. ACS Appl. Mater. Interfaces. 8 (2016) 17260-17267.

DOI: 10.1021/acsami.6b04425

Google Scholar

[29] Q.-C. Meng, L.-B. Jin, M.-Z. Ma, X.-Q. Gao, A.-B. Chen, D.-J. Zhou, X.-M. Sun. Highly Dispersed Pt Nanoparticles Root in Single-Atom Fe Sites in LDHs toward Efficient Methanol Oxidation. J. Electrochem. 29 (2023) 2215007.

Google Scholar

[30] H. Feng, J. Yu, L. Tang, J. Wang, H. Dong, T. Ni, J. Tang, W. Tang, X. Zhu, C. Liang. Improved hydrogen evolution activity of layered double hydroxide by optimizing the electronic structure. Appl. Catal. B-Environ. 297 (2021) 120478.

DOI: 10.1016/j.apcatb.2021.120478

Google Scholar

[31] J.-J. Zhang, M.-Y. Li, X. Li, W.-W. Bao, C.-Q. Jin, X.-H. Feng, G. Liu, C.-M. Yang, N.-N. Zhang. Chromium-Modified Ultrathin CoFe LDH as High-Efficiency Electrode for Hydrogen Evolution Reaction. Nanomaterials 12 (2022) 1227.

DOI: 10.3390/nano12071227

Google Scholar

[32] C. Hong, J. Ji, J. Huang, Y. Zhang, L. Li. NiMo/NiFe-LDH heterostructured electrocatalyst for hydrogen production from water electrolysis. Mate. Lett. 379 (2025) 137664.

DOI: 10.1016/j.matlet.2024.137664

Google Scholar

[33] X. Zhang, M. Wang, C. Hu, T. Li, X. Yan, P. Zhang, Z. Chen. Modification of WO3 photoanode with NiFe-LDHs nanosheets array for efficient Photoelectrocatalytic removal of tetracycline. Appl. Surf. Sci. 622 (2023) 156977.

DOI: 10.1016/j.apsusc.2023.156977

Google Scholar

[34] G. Zheng, C. Wu, J. Wang, S. Mo, Z. Zou, B. Zhou, F. Long. Space-Confined Effect One-Pot Synthesis of γ-AlO(OH)/MgAl-LDH Heterostructures with Excellent Adsorption Performance. Nanoscale Res. Lett. 14 (2019) 281.

DOI: 10.1186/s11671-019-3112-x

Google Scholar

[35] N. Tang, T. He, J. Liu, L. Li, H. Shi, W. Cen, Z. Ye. New Insights into CO2 Adsorption on Layered Double Hydroxide (LDH)-Based Nanomaterials. Nanoscale Res. Lett. 13 (2018) 55.

DOI: 10.1186/s11671-018-2471-z

Google Scholar

[36] M. A. Khan, A. R. Safira, M. Kaseem, M. A. Khan. Modulating chelation with pH sensitivity for controlled structural defects and enhanced electrochemical and photocatalytic activities of LDH films. J. Mater. Chem. 12 (2024) 3411-3433.

DOI: 10.1039/d3ta06840d

Google Scholar

[37] Y. Bian, K. Zhao, T. Hu, C. Tan, R. Liang, X. Weng. A Se Nanoparticle/MgFe‐LDH Composite Nanosheet as a Multifunctional Platform for Osteosarcoma Eradication, Antibacterial and Bone Reconstruction. Adv. Sci. 11 (2024).

DOI: 10.1002/advs.202403791

Google Scholar

[38] Y. Fu, X. Fu, W. Song, Y. Li, X. Li, L. Yan. Recent Progress of Layered Double Hydroxide-Based Materials in Wastewater Treatment. Materials 16 (2023) 16 5723.

DOI: 10.3390/ma16165723

Google Scholar

[39] S. Huang, Y. Wu, J. Fu, P. Xin, Q. Zhang, Z. Jin, J. Zhang, Z. Hu, Z. Chen. Hierarchical CoFe LDH/MOF nanorods array with strong coupling effect grown on carbon cloth enables efficient oxidation of water and urea. Nanotechnology 32 (2021) 385405.

DOI: 10.1088/1361-6528/ac0b65

Google Scholar

[40] Y. Cao, H. Gou, P. Zhu, Z. Jin. Ingenious Design of CoAl-LDH p-n Heterojunction Based on Cul as Holes Receptor for Photocatalytic Hydrogen Evolution. Chin. J. Struct. Chem. 41 (2022) 2206079-2206085.

Google Scholar

[41] J. Dréon, Q. Jeangros, J. Cattin, J. Haschke, L. Antognini, C. Ballif, M. Boccard. 23.5%-efficient silicon heterojunction silicon solar cell using molybdenum oxide as hole-selective contact. Nano Energy 70 (2020) 104495.

DOI: 10.1016/j.nanoen.2020.104495

Google Scholar

[42] D. Zhou, Z. Cai, X. Lei, W. Tian, Y. Bi, Y. Jia, N. Han, T. Gao, Q. Zhang, Y. Kuang. NiCoFe‐layered double hydroxides/N‐doped graphene oxide array colloid composite as an efficient bifunctional catalyst for oxygen electrocatalytic reactions. Adv. Energy Mater. 8 (2018) 1701905.

DOI: 10.1002/aenm.201701905

Google Scholar

[43] L. Yu, H. Zhou, J. Sun, F. Qin, F. Yu, J. Bao, Y. Yu, S. Chen, Z. Ren. Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting. Energy Environ. Sci. 10 (2017) 1820-1827.

DOI: 10.1039/c7ee01571b

Google Scholar

[44] D. H. Shin, S. H. Shin, S. Kim, S.-H. Choi. High-performance and-stability graphene quantum dots-mixed conducting polymer/porous Si hybrid solar cells with titanium oxide passivation layer. Nanotechnology 31 (2019) 095202.

DOI: 10.1088/1361-6528/ab5838

Google Scholar

[45] K. Shetty, Y. Kaushal, N. Chikkaiah, C. M. Kumar. Emitter quality optimization using lightly doped phosphorus diffusion and thermal oxide anneal for cell efficiency improvement in multi-crystalline black silicon solar cells. J. Power Energy Eng. 10 (2022) 35-47.

DOI: 10.4236/jpee.2022.103003

Google Scholar

[46] I. Oh, J. Kye, S. Hwang. Enhanced photoelectrochemical hydrogen production from silicon nanowire array photocathode. Nano Lett. 12 (2012) 298-302.

DOI: 10.1021/nl203564s

Google Scholar

[47] D. Wang, Q. Li, C. Han, Q. Lu, Z. Xing, X. Yang. Atomic and electronic modulation of self-supported nickel-vanadium layered double hydroxide to accelerate water splitting kinetics. Nat. Commun. 10 (2019) 3899.

DOI: 10.1038/s41467-019-11765-x

Google Scholar

[48] Y. Ni, L. Yao, Y. Wang, B. Liu, M. Cao, C. Hu. Construction of hierarchically porous graphitized carbon-supported NiFe layered double hydroxides with a core–shell structure as an enhanced electrocatalyst for the oxygen evolution reaction. Nanoscale 9 (2017) 11596-11604.

DOI: 10.1039/c7nr03661b

Google Scholar

[49] T. Wang, W. Xu, H. Wang. Ternary NiCoFe layered double hydroxide nanosheets synthesized by cation exchange reaction for oxygen evolution reaction. Electrochim. Acta. 257 (2017) 118-127.

DOI: 10.1016/j.electacta.2017.10.074

Google Scholar

[50] T. Yao, R. Chen, J. Li, J. Han, W. Qin, H. Wang, J. Shi, F. Fan, C. Li. Manipulating the interfacial energetics of n-type silicon photoanode for efficient water oxidation. J. Am. Chem. Soc. 138 (2016) 13664-13672.

DOI: 10.1021/jacs.6b07188

Google Scholar

[51] C. Montella. Further investigation of the equivalence of staircase and linear scan voltammograms. I- Sampling conditions for reversible reactions involving soluble species. J. Electroanal. Chem. 796 (2017) 96-107.

DOI: 10.1016/j.jelechem.2017.04.048

Google Scholar

[52] C. Montella. Further investigation of the equivalence of staircase and linear scan voltammograms. II - Effects of electron transfer kinetics, Ohmic drop and double-layer charging. J. Electroanal. Chem. 799 (2017) 194-205.

DOI: 10.1016/j.jelechem.2017.05.055

Google Scholar

[53] C. Montella. Further investigation of the equivalence of staircase and linear scan voltammograms. III-Averaged-current staircase voltammetry applied to electrochemical reactions involving adsorbed species. J. Electroanal. Chem. 808 (2018) 348-361.

DOI: 10.1016/j.jelechem.2017.12.016

Google Scholar