[1]
X. M. C. Ta, R. Daiyan, T. K. A. Nguyen, R. Amal, T. Tran‐Phu, A. Tricoli. Alternatives to water photooxidation for photoelectrochemical solar energy conversion and green H2 production. Adv. Energy. Mater. 12 (2022) 2201358.
DOI: 10.1002/aenm.202201358
Google Scholar
[2]
H. Tang, S. He, C. Peng. A Short Progress Report on High-Efficiency Perovskite Solar Cells. Nanoscale Res. Lett. 12 (2017) 410.
DOI: 10.1186/s11671-017-2187-5
Google Scholar
[3]
S. I. Leiva-Guajardo, N. Toro, E. Fuentealba, M. J. Morel, Á. Soliz, C. Portillo, F. M. Galleguillos Madrid. Contribution of Copper Slag to Water Treatment and Hydrogen Production by Photocatalytic Mechanisms in Aqueous Solutions: A Mini Review. materials 17 (2024) 5434.
DOI: 10.3390/ma17225434
Google Scholar
[4]
B. Wu, T. Wang, B. Liu, H. Li, Y. Wang, S. Wang, L. Zhang, S. Jiang, C. Pei, J. Gong. Stable solar water splitting with wettable organic-layer-protected silicon photocathodes. Nat. Commun. 13 (2022) 4460.
DOI: 10.1038/s41467-022-32099-1
Google Scholar
[5]
X. Meng, Z. Li, Y. Liu, Z. Wang, P. Wang, Z. Zheng, Y. Dai, B. Huang, H. Cheng, J.-H. He. Enabling unassisted solar water splitting with concurrent high efficiency and stability by robust earth-abundant bifunctional electrocatalysts. Nano Energy 109 (2023) 108296.
DOI: 10.1016/j.nanoen.2023.108296
Google Scholar
[6]
R.-T. Gao, N. T. Nguyen, T. Nakajima, J. He, X. Liu, X. Zhang, L. Wang, L. Wu. Dynamic semiconductor-electrolyte interface for sustainable solar water splitting over 600 hours under neutral conditions. Sci. Adv. 9 (2023) 4589.
DOI: 10.1126/sciadv.ade4589
Google Scholar
[7]
K. Feng, K. Wu, J. Fan, T. Sun, E. Liu. Ni3Se4/ZnIn2S4 S-scheme heterojunction for efficient photocatalytic H2 evolution. Materials Letters 363 (2024) 136255.
DOI: 10.1016/j.matlet.2024.136255
Google Scholar
[8]
M. Sindhu, A. Sharma, K. S. Maan, V. Patel, P. P. Singh, B.-S. Nguyen, D.-V. N. Vo, V.-H. Nguyen. Nb-Ta3N5 protected with PANI nanocomposite for enhanced photocatalytic water-splitting towards hydrogen production under visible light irradiation. Materials Letters 359 (2024) 135895.
DOI: 10.1016/j.matlet.2024.135895
Google Scholar
[9]
X. Sun, C. Liu, P. Zhang, L. Gong, M. Wang. Interface-engineered silicon photocathodes with a NiCoP catalyst-modified TiO2 nanorod array outlayer for photoelectrochemical hydrogen production in alkaline solution. J Power Sources 484 (2021) 229272.
DOI: 10.1016/j.jpowsour.2020.229272
Google Scholar
[10]
X. Zhang, M. Wang, C. Hu, T. Li, X. Yan, P. Zhang, Z. Chen. Modification of WO3 photoanode with NiFe-LDHs nanosheets array for efficient Photoelectrocatalytic removal of tetracycline. Appl Surf Sci 622 (2023) 156977.
DOI: 10.1016/j.apsusc.2023.156977
Google Scholar
[11]
H.-W. Chang, Y. Fu, W.-Y. Lee, Y.-R. Lu, Y.-C. Huang, J.-L. Chen, C.-L. Chen, W. C. Chou, J.-M. Chen, J.-F. Lee. Visible light-induced electronic structure modulation of Nb-and Ta-doped α-Fe2O3 nanorods for effective photoelectrochemical water splitting. Nanotechnology 29 (2018) 064002.
DOI: 10.1088/1361-6528/aa9d75
Google Scholar
[12]
L. Xi, Q. Zhang, Z. Sun, C. Song, L. Xu. Rational design of ternary composite photoanode BiVO4/PW12/NiTsPc for improved photoelectrochemical water oxidation. Chemelectrochem 5 (2018) 2534-2541.
DOI: 10.1002/celc.201800560
Google Scholar
[13]
S. Sun, Z. Wang, S. Meng, R. Yu, D. Jiang, M. Chen. Iron and chromium co-doped cobalt phosphide porous nanosheets as robust bifunctional electrocatalyst for efficient water splitting. Nanotechnology 33 (2021) 075204.
DOI: 10.1088/1361-6528/ac297e
Google Scholar
[14]
J.-X. Jian, V. Jokubavicius, M. SyväJäRvi, R. Yakimova, J. Sun. Nanoporous cubic silicon carbide photoanodes for enhanced solar water splitting. ACS Nano 15 (2021) 5502-5512.
DOI: 10.1021/acsnano.1c00256
Google Scholar
[15]
K. Raju, K. K. Gopalakrishnan, G. Ashokan, J. Kulandaivel. Artificial photosynthetic approach steers hydrogen evolution with bismuth selenide nanoflakes decorated silicon nanowires. Materials Letters 366 (2024) 136571.
DOI: 10.1016/j.matlet.2024.136571
Google Scholar
[16]
L. Salgado-Conrado, C. Álvarez-Macías, B. Reyes-Durán. A Review of Simulation Tools for Thin-Film Solar Cells. materials 17 (2024) 5213.
DOI: 10.3390/ma17215213
Google Scholar
[17]
Z. Luo, T. Wang, J. Gong. Single-crystal silicon-based electrodes for unbiased solar water splitting: current status and prospects. Chem. Soc. Rev. 48 (2019) 2158-2181.
DOI: 10.1039/c8cs00638e
Google Scholar
[18]
Z. Chen, K. Fang, Y. Bu, J.-P. Ao. Development of functionalized CoOx-NiFe LDH bi-layers to improve the photoelectrochemical water oxidation property of n-Si photoanode. J Alloys Compd. 942 (2023) 168948.
DOI: 10.1016/j.jallcom.2023.168948
Google Scholar
[19]
S. E. Jun, S. P. Hong, S. Choi, C. Kim, S. G. Ji, I. J. Park, S. A. Lee, J. W. Yang, T. H. Lee, W. Sohn. Boosting Unassisted Alkaline Solar Water Splitting Using Silicon Photocathode with TiO2 Nanorods Decorated by Edge‐Rich MoS2 Nanoplates. Small 17 (2021) 2103457.
DOI: 10.1002/smll.202103457
Google Scholar
[20]
M. G. Kast, L. J. Enman, N. J. Gurnon, A. Nadarajah, S. W. Boettcher. Solution-deposited F: SnO2/TiO2 as a base-stable protective layer and antireflective coating for microtextured buried-junction H2-evolving Si photocathodes. ACS Appl. Mater. Interfaces 6 (2014) 22830-22837.
DOI: 10.1021/am506999p
Google Scholar
[21]
L. Liu, S. Xia, Y. Diao, F. Lu, J. Tian. Enhancement of photoemission capability and electron collection efficiency of field-assisted GaN nanowire array photocathode. Nanotechnology 31 (2019) 025201.
DOI: 10.1088/1361-6528/ab468a
Google Scholar
[22]
X. Zheng, Y. Liu, Y. Yang, Y. Song, P. Deng, J. Li, W. Liu, Y. Shen, X. Tian. Recent advances in cadmium sulfide-based photocatalysts for photocatalytic hydrogen evolution. Renewables 1 (2023) 39-56.
DOI: 10.31635/renewables.022.202200001
Google Scholar
[23]
J. Zhao, L. Cai, H. Li, X. Shi, X. Zheng. Stabilizing silicon photocathodes by solution-deposited Ni–Fe layered double hydroxide for efficient hydrogen evolution in alkaline media. ACS Energy Lett. 2 (2017) 1939-1946.
DOI: 10.1021/acsenergylett.7b00597
Google Scholar
[24]
J.-Y. Jung, J.-Y. Yu, J.-H. Lee. Dynamic Photoelectrochemical Device Using an Electrolyte-Permeable NiOx/SiO2/Si Photocathode with an Open-Circuit Potential of 0.75 V. ACS Appl. Mater. Interfaces 10 (2018) 7955-7962.
DOI: 10.1021/acsami.7b16918
Google Scholar
[25]
H. Zhang, Q. Ding, D. He, H. Liu, W. Liu, Z. Li, B. Yang, X. Zhang, L. Lei, S. Jin. A p-Si/NiCoSex core/shell nanopillar array photocathode for enhanced photoelectrochemical hydrogen production. Energy Environ. Sci. 9 (2016) 3113-3119.
DOI: 10.1039/c6ee02215d
Google Scholar
[26]
Y. Peng, S. Wang, Z. Liu, Z. Zhou, S. Zhou, M. Yao. Influence of parasitic optical losses on the performance of perovskite solar cells. J. Phys. D: Appl. Phys. 56 (2023).
DOI: 10.1088/1361-6463/ace1fb
Google Scholar
[27]
H. J. Eggimann, J. B. Patel, M. B. Johnston, L. M. Herz. Efficient energy transfer mitigates parasitic light absorption in molecular charge-extraction layers for perovskite solar cells. Nat. Commun. 11 (2020).
DOI: 10.1038/s41467-020-19268-w
Google Scholar
[28]
J. Werner, J. Geissbühler, A. Dabirian, S. Nicolay, M. Morales-Masis, S. D. Wolf, B. Niesen, C. Ballif. Parasitic Absorption Reduction in Metal Oxide-Based Transparent Electrodes: Application in Perovskite Solar Cells. ACS Appl. Mater. Interfaces. 8 (2016) 17260-17267.
DOI: 10.1021/acsami.6b04425
Google Scholar
[29]
Q.-C. Meng, L.-B. Jin, M.-Z. Ma, X.-Q. Gao, A.-B. Chen, D.-J. Zhou, X.-M. Sun. Highly Dispersed Pt Nanoparticles Root in Single-Atom Fe Sites in LDHs toward Efficient Methanol Oxidation. J. Electrochem. 29 (2023) 2215007.
Google Scholar
[30]
H. Feng, J. Yu, L. Tang, J. Wang, H. Dong, T. Ni, J. Tang, W. Tang, X. Zhu, C. Liang. Improved hydrogen evolution activity of layered double hydroxide by optimizing the electronic structure. Appl. Catal. B-Environ. 297 (2021) 120478.
DOI: 10.1016/j.apcatb.2021.120478
Google Scholar
[31]
J.-J. Zhang, M.-Y. Li, X. Li, W.-W. Bao, C.-Q. Jin, X.-H. Feng, G. Liu, C.-M. Yang, N.-N. Zhang. Chromium-Modified Ultrathin CoFe LDH as High-Efficiency Electrode for Hydrogen Evolution Reaction. Nanomaterials 12 (2022) 1227.
DOI: 10.3390/nano12071227
Google Scholar
[32]
C. Hong, J. Ji, J. Huang, Y. Zhang, L. Li. NiMo/NiFe-LDH heterostructured electrocatalyst for hydrogen production from water electrolysis. Mate. Lett. 379 (2025) 137664.
DOI: 10.1016/j.matlet.2024.137664
Google Scholar
[33]
X. Zhang, M. Wang, C. Hu, T. Li, X. Yan, P. Zhang, Z. Chen. Modification of WO3 photoanode with NiFe-LDHs nanosheets array for efficient Photoelectrocatalytic removal of tetracycline. Appl. Surf. Sci. 622 (2023) 156977.
DOI: 10.1016/j.apsusc.2023.156977
Google Scholar
[34]
G. Zheng, C. Wu, J. Wang, S. Mo, Z. Zou, B. Zhou, F. Long. Space-Confined Effect One-Pot Synthesis of γ-AlO(OH)/MgAl-LDH Heterostructures with Excellent Adsorption Performance. Nanoscale Res. Lett. 14 (2019) 281.
DOI: 10.1186/s11671-019-3112-x
Google Scholar
[35]
N. Tang, T. He, J. Liu, L. Li, H. Shi, W. Cen, Z. Ye. New Insights into CO2 Adsorption on Layered Double Hydroxide (LDH)-Based Nanomaterials. Nanoscale Res. Lett. 13 (2018) 55.
DOI: 10.1186/s11671-018-2471-z
Google Scholar
[36]
M. A. Khan, A. R. Safira, M. Kaseem, M. A. Khan. Modulating chelation with pH sensitivity for controlled structural defects and enhanced electrochemical and photocatalytic activities of LDH films. J. Mater. Chem. 12 (2024) 3411-3433.
DOI: 10.1039/d3ta06840d
Google Scholar
[37]
Y. Bian, K. Zhao, T. Hu, C. Tan, R. Liang, X. Weng. A Se Nanoparticle/MgFe‐LDH Composite Nanosheet as a Multifunctional Platform for Osteosarcoma Eradication, Antibacterial and Bone Reconstruction. Adv. Sci. 11 (2024).
DOI: 10.1002/advs.202403791
Google Scholar
[38]
Y. Fu, X. Fu, W. Song, Y. Li, X. Li, L. Yan. Recent Progress of Layered Double Hydroxide-Based Materials in Wastewater Treatment. Materials 16 (2023) 16 5723.
DOI: 10.3390/ma16165723
Google Scholar
[39]
S. Huang, Y. Wu, J. Fu, P. Xin, Q. Zhang, Z. Jin, J. Zhang, Z. Hu, Z. Chen. Hierarchical CoFe LDH/MOF nanorods array with strong coupling effect grown on carbon cloth enables efficient oxidation of water and urea. Nanotechnology 32 (2021) 385405.
DOI: 10.1088/1361-6528/ac0b65
Google Scholar
[40]
Y. Cao, H. Gou, P. Zhu, Z. Jin. Ingenious Design of CoAl-LDH p-n Heterojunction Based on Cul as Holes Receptor for Photocatalytic Hydrogen Evolution. Chin. J. Struct. Chem. 41 (2022) 2206079-2206085.
Google Scholar
[41]
J. Dréon, Q. Jeangros, J. Cattin, J. Haschke, L. Antognini, C. Ballif, M. Boccard. 23.5%-efficient silicon heterojunction silicon solar cell using molybdenum oxide as hole-selective contact. Nano Energy 70 (2020) 104495.
DOI: 10.1016/j.nanoen.2020.104495
Google Scholar
[42]
D. Zhou, Z. Cai, X. Lei, W. Tian, Y. Bi, Y. Jia, N. Han, T. Gao, Q. Zhang, Y. Kuang. NiCoFe‐layered double hydroxides/N‐doped graphene oxide array colloid composite as an efficient bifunctional catalyst for oxygen electrocatalytic reactions. Adv. Energy Mater. 8 (2018) 1701905.
DOI: 10.1002/aenm.201701905
Google Scholar
[43]
L. Yu, H. Zhou, J. Sun, F. Qin, F. Yu, J. Bao, Y. Yu, S. Chen, Z. Ren. Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting. Energy Environ. Sci. 10 (2017) 1820-1827.
DOI: 10.1039/c7ee01571b
Google Scholar
[44]
D. H. Shin, S. H. Shin, S. Kim, S.-H. Choi. High-performance and-stability graphene quantum dots-mixed conducting polymer/porous Si hybrid solar cells with titanium oxide passivation layer. Nanotechnology 31 (2019) 095202.
DOI: 10.1088/1361-6528/ab5838
Google Scholar
[45]
K. Shetty, Y. Kaushal, N. Chikkaiah, C. M. Kumar. Emitter quality optimization using lightly doped phosphorus diffusion and thermal oxide anneal for cell efficiency improvement in multi-crystalline black silicon solar cells. J. Power Energy Eng. 10 (2022) 35-47.
DOI: 10.4236/jpee.2022.103003
Google Scholar
[46]
I. Oh, J. Kye, S. Hwang. Enhanced photoelectrochemical hydrogen production from silicon nanowire array photocathode. Nano Lett. 12 (2012) 298-302.
DOI: 10.1021/nl203564s
Google Scholar
[47]
D. Wang, Q. Li, C. Han, Q. Lu, Z. Xing, X. Yang. Atomic and electronic modulation of self-supported nickel-vanadium layered double hydroxide to accelerate water splitting kinetics. Nat. Commun. 10 (2019) 3899.
DOI: 10.1038/s41467-019-11765-x
Google Scholar
[48]
Y. Ni, L. Yao, Y. Wang, B. Liu, M. Cao, C. Hu. Construction of hierarchically porous graphitized carbon-supported NiFe layered double hydroxides with a core–shell structure as an enhanced electrocatalyst for the oxygen evolution reaction. Nanoscale 9 (2017) 11596-11604.
DOI: 10.1039/c7nr03661b
Google Scholar
[49]
T. Wang, W. Xu, H. Wang. Ternary NiCoFe layered double hydroxide nanosheets synthesized by cation exchange reaction for oxygen evolution reaction. Electrochim. Acta. 257 (2017) 118-127.
DOI: 10.1016/j.electacta.2017.10.074
Google Scholar
[50]
T. Yao, R. Chen, J. Li, J. Han, W. Qin, H. Wang, J. Shi, F. Fan, C. Li. Manipulating the interfacial energetics of n-type silicon photoanode for efficient water oxidation. J. Am. Chem. Soc. 138 (2016) 13664-13672.
DOI: 10.1021/jacs.6b07188
Google Scholar
[51]
C. Montella. Further investigation of the equivalence of staircase and linear scan voltammograms. I- Sampling conditions for reversible reactions involving soluble species. J. Electroanal. Chem. 796 (2017) 96-107.
DOI: 10.1016/j.jelechem.2017.04.048
Google Scholar
[52]
C. Montella. Further investigation of the equivalence of staircase and linear scan voltammograms. II - Effects of electron transfer kinetics, Ohmic drop and double-layer charging. J. Electroanal. Chem. 799 (2017) 194-205.
DOI: 10.1016/j.jelechem.2017.05.055
Google Scholar
[53]
C. Montella. Further investigation of the equivalence of staircase and linear scan voltammograms. III-Averaged-current staircase voltammetry applied to electrochemical reactions involving adsorbed species. J. Electroanal. Chem. 808 (2018) 348-361.
DOI: 10.1016/j.jelechem.2017.12.016
Google Scholar