Study of Electric Properties of rGO/Fe3O4 Nanocomposites and their Potential Applications as Counter Electrode of Dye-Sensitized Solar Cells

Article Preview

Abstract:

rGO/Fe3O4 nanocomposites were prepared through the solid-state technique by adjusting FeCl2 and FeCl3 volumes (1, 2, 3, 4, and 5 ml). The structural, chemical, morphological, and optical properties of the nanocomposites were investigated using XRD, FTIR, SEM, and UV-Vis Spectroscopy. The synthesized rGO/Fe3O4 nanocomposite was deposited on an FTO substrate through drop coating to fabricate a CE plate, which was then tested using a solar simulator with FTO/TiO2 serving as the photoanode. The XRD patterns of the rGO/Fe3O4 nanocomposite showed consistency with COD data number 3000327. Calculations using Debye's Scherrer equation demonstrated that Fe3O4 crystal size diminished as Fe3O4 concentration increased. The FTIR analysis confirmed the existence of C=C and Fe-O bonds, characteristic of rGO and Fe3O4 particles' functional groups. As FeCl2 and FeCl3 concentrations increased from 1 ml to 5 ml, the band gap energy of the rGO/Fe3O4 nanocomposite expanded from 3.14 eV to 3.39 eV. This band gap energy expansion correlated with improved DSSC solar cell performance, with efficiency increasing from 0.003% (RF1) to 0.097% (RF5), suggesting catalytic activity supporting electrolyte regeneration in DSSC solar cells.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

59-73

Citation:

Online since:

June 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. H. Tan and J. Mohamad Saleh, Critical review on interrelationship of electro-devices in PV solar systems with their evolution and future prospects for MPPT applications, Energies (Basel), 16 (2023) 850.

DOI: 10.3390/en16020850

Google Scholar

[2] A. S. Al-Ezzi and M. N. M. Ansari, Photovoltaic solar cells: a review, Applied System Innovation, 5 (2022) 67.

Google Scholar

[3] S. S. Mousavi Ajarostaghi and S. S. Mousavi, Solar energy conversion technologies: principles and advancements, in Solar Energy Advancements in Agriculture and Food Production Systems, S. Gorjian and P. E. Campana, Eds., Academic Press, 2022, p.29–76.

DOI: 10.1016/b978-0-323-89866-9.00005-5

Google Scholar

[4] A. (Antonio) Luque and Steven. Hegedus, Handbook of photovoltaic science and engineering. Wiley, 2011.

Google Scholar

[5] M. V. Dambhare, B. Butey, and S. V. Moharil, Solar photovoltaic technology: A review of different types of solar cells and its future trends, in Journal of Physics: Conference Series, IOP Publishing Ltd (2021).

DOI: 10.1088/1742-6596/1913/1/012053

Google Scholar

[6] H. Liu et al., Coupled Photochemical Storage Materials in Solar Rechargeable Batteries: Progress, Challenges, and Prospects, Adv Energy Mater, 14 (2024) 2402381.

Google Scholar

[7] A. A. Qureshi, S. Javed, H. M. Asif Javed, A. Akram, M. Jamshaid, and A. Shaheen, Strategic design of Cu/TiO2-based photoanode and rGO-Fe3O4-based counter electrode for optimized plasmonic dye-sensitized solar cells, Opt Mater (Amst), 109 (2020).

DOI: 10.1016/j.optmat.2020.110267

Google Scholar

[8] H. Hao, H. Pu, D. Lu, M. Zhou, B. Zhang, and X. Zhang, Core-shell like rGO coated Co9S8 hollow dodecahedron for enhanced oxygen evolution reaction, Journal of Physics and Chemistry of Solids, 196 (2025) 112318.

DOI: 10.1016/j.jpcs.2024.112318

Google Scholar

[9] M. Imran, Md. M. Alam, S. Hussain, M. A. Ali, M. Shkir, A. Mohammad, T. Ahamad, A. Kaushik, and K. Irshad, Highly photocatalytic active r-GO/Fe3O4 nanocomposites development for enhanced photocatalysis application: A facile low-cost preparation and characterization, Ceram Int, 4 (2021) 31973–31982.

DOI: 10.1016/j.ceramint.2021.08.083

Google Scholar

[10] H. Wu, Q. Ai, C. Yang, R. Huang, G. Jiang, J. Xiong, and S. Yuan, Preparation and electrochemical properties of Fe/Fe3O4@rGO composite nanocage with 3D hollow structure, Journal of Solid State Electrochemistry, 25 (2021) 869–879.

DOI: 10.1007/s10008-020-04865-y

Google Scholar

[11] N. Alwadai, A. Ali, A. Liaqat, A. Fatima, M. Iqbal, A. Nazir, W. Mnif, Z. Algarni, S. Akyürekli, and M. Kaleli, Electrodeposited polyaniline modified CNT fiber as efficient counter electrode in flexible dye-sensitized solar cells, 307 (2024) 117692.

DOI: 10.1016/j.synthmet.2024.117692

Google Scholar

[12] N. Shahzad, Lutfullah, T. Perveen, D. Pugliese, S. Haq, N. Fatima, S. M. Salman, A. Tagliaferro, and M. I. Shahzad, Counter electrode materials based on carbon nanotubes for dye-sensitized solar cells, Elsevier Ltd. (2022).

DOI: 10.1016/j.rser.2022.112196

Google Scholar

[13] R. Tarcan, O. Todor-Boer, I. Petrovai, C. Leordean, S. Astilean, and I. Botiz, Reduced graphene oxide today, Royal Society of Chemistry. (2020).

DOI: 10.1039/c9tc04916a

Google Scholar

[14] A. A. Qureshi, S. Javed, H. M. A. Javed, A. Akram, M. S. Mustafa, U. Ali, and M. Z. Nisar, Facile formation of SnO2–TiO2 based photoanode and Fe3O4@rGO based counter electrode for efficient dye-sensitized solar cells, Mater Sci Semicond Process, 123 (2021).

DOI: 10.1016/j.mssp.2020.105545

Google Scholar

[15] R. Eivazzadeh-Keihan, Z. Sadat, F. Lalebeigi, N. Naderi, L. Panahi, F. Ganjali, S. Mahdian, Z. Saadatidizaji, M. Mahdavi, E. Chidar, E. Soleimani, A. Ghaee, A. Maleki, and I, Zare, Effects of mechanical properties of carbon-based nanocomposites on scaffolds for tissue engineering applications: a comprehensive review, Nanoscale Adv, (2024).

DOI: 10.1039/d3na00554b

Google Scholar

[16] B. Maleki and H. Esmaeili, Application of Fe3O4/SiO2@ZnO magnetic composites as a recyclable heterogeneous nanocatalyst for biodiesel production from waste cooking oil: Response surface methodology, Ceram Int, 49 (2023) 11452–11463.

DOI: 10.1016/j.ceramint.2022.11.344

Google Scholar

[17] S. Ananthi, M. Kavitha, E. R. Kumar, A. Balamurugan, Y. Al-Douri, H. K. Alzahrani, A. A. Keshk, T. M. Habeebullah, S. H. Abdel-Hafez, and N. M. El-Metwaly, Natural tannic acid (green tea) mediated synthesis of ethanol sensor based Fe3O4 nanoparticles: Investigation of structural, morphological, optical properties and colloidal stability for gas sensor application, Sens Actuators B Chem, 352 (2022).

DOI: 10.1016/j.snb.2021.131071

Google Scholar

[18] N. M. El-Shafai, M. M. Abdelfatah, M. E. El-Khouly, I .M. El-Mehasseb, A. El-Shaer, M. S. Ramadan, M. S. Masoud, dan M. A. El-Kemary, Magnetite nano-spherical quantum dots decorated graphene oxide nano sheet (GO@Fe3O4): Electrochemical properties and applications for removal heavy metals, pesticide and solar cell, Appl Surf Sci, 506 (2020) 144896.

DOI: 10.1016/j.apsusc.2019.144896

Google Scholar

[19] F. Habibi, M. Seyyedi, and B. Ayati, Synthesis and application of reusable and magnetic rGO/Fe3O4 nanocomposites in BR46 removal from an aqueous solution; future prospects of an efficient adsorption platform, J Mater Environ Sci, 13 (2022) 900–913.

Google Scholar

[20] J. Jagiello, A. Chlanda, M. Baran, M. Gwiazda, and L. Lipinska, Synthesis and Characterization of Graphene Oxide and Reduced Graphene Oxide Composites with Inorganic Nanoparticles for Biomedical Applications, Nanomaterials, 10 (2020) 1–19.

DOI: 10.3390/nano10091846

Google Scholar

[21] N. A. Devi, S. Nongthombam, S. Sinha, R. Bhujel, S. Rai, W. I. Singh, P. Dasgupta, B. P. Swain, Investigation of chemical bonding and supercapacitivity properties of Fe3O4-rGO nanocomposites for supercapacitor applications, Diam Relat Mater, 104 (2020).

DOI: 10.1016/j.diamond.2020.107756

Google Scholar

[22] L. Shen, J. Dong, B. Wen, X. Wen, and J. Li, Facile Synthesis of hollow Fe3O4-rGO nanocomposites for the electrochemical detection of acetaminophen, Nanomaterials, 13 (2023) 707.

DOI: 10.3390/nano13040707

Google Scholar

[23] W. Wang, J. Yao, and G. Li, Dual-functional Fe3O4@N-rGO catalyst as counter electrode with high performance in dye-sensitized solar cells, Journal of Electroanalytical Chemistry, 823 (2018) 261–268.

DOI: 10.1016/j.jelechem.2018.06.019

Google Scholar

[24] M. Liu, Y. Ye, J. Ye, T. Gao, D. Wang, G. Cheng, dan Z. Song, Recent Advances of Magnetite (Fe3O4)-Based Magnetic Materials in Catalytic Applications, MDPI, (2023).

DOI: 10.3390/magnetochemistry9040110

Google Scholar

[25] W. Li, B. Li, Y. Zhao, X. Wei, and F. Guo, Facile synthesis of Fe3O4 nanoparticles/reduced graphene oxide sandwich composites for highly efficient microwave absorption, J Colloid Interface Sci, 645 (2023) 76–85.

DOI: 10.1016/j.jcis.2023.04.131

Google Scholar

[26] M. E. Naghani, M. Neghabi, M. Zadsar, and H. Abbastabar Ahangar, Synthesis and characterization of linear/nonlinear optical properties of graphene oxide and reduced graphene oxide-based zinc oxide nanocomposite, Sci Rep, 13 (2023).

DOI: 10.1038/s41598-023-28307-7

Google Scholar

[27] B. M. Chufa, B. A. Gonfa, T. Y. Anshebo, and G. A. Workneh, A Novel and Simplest Green Synthesis Method of Reduced Graphene Oxide Using Methanol Extracted Vernonia Amygdalina: Large-Scale Production, Advances in Condensed Matter Physics, 2021 (2021).

DOI: 10.1155/2021/6681710

Google Scholar

[28] R. Yang, Y. Wang, Q. Deng, P. Hui, Z. Lou, Y. Yang, and L. Wang, Metal–organic framework derived Fe3O4/C/rGO composite as an anode material in lithium-ion batteries, Ionics (Kiel), 27 (2021) 3281–3289.

DOI: 10.1007/s11581-021-04143-5

Google Scholar

[29] P. W. Chi, T. Paul, Y. Su, C. Su, P. M. Wu, S. Wang, dan M. Wu, A study on Ti-doped Fe3O4 anode for Li ion battery using machine learning, electrochemical and distribution function of relaxation times (DFRTs) analyses, Sci Rep, 12 (2022).

DOI: 10.1038/s41598-022-08584-4

Google Scholar

[30] Isah, A. A., Shitu, I. G., Muhammad, D., Adamu, S. B., Katibi, K. K., Iya, S. G. D., and Chiromawa, I. M, Bridging Simulation and Experiment: Crystallite Size and Microstrain Analysis of Magnetite (Fe3O4) Nanoparticles, (2024).

Google Scholar

[31] C. Bulin, T. Guo, J. Bao, G. Xin, J. Song, and R. Zheng, A novel strategy towards controllable fabrication of Fe3O4-partially reduced graphene oxide based on restricted hydrolysis in mixed solvent, Surfaces and Interfaces, 51 (2024).

DOI: 10.1016/j.surfin.2024.104804

Google Scholar

[32] A. Khodadadi, M. R. Talebtash, and M. Farahmandjou, Effect of PVA/PEG-coated Fe3O4 Nanoparticles on the Structure, Morphology and Magnetic Properties, Physical Chemistry Research, 10 (2022) 537–547.

Google Scholar

[33] M. Hamid, M. Rianna, W. R. Rangkuti, T. Sembiring, and P. Sebayang, Study and characterization rGO/Fe3O4 in microstructure and - magnetic properties, S Afr J Chem Eng, 42 (2022) 280–282.

DOI: 10.1016/j.sajce.2022.08.008

Google Scholar

[34] F. Yusoff, K. Suresh, and W. M. Khairul, Synthesis and characterization of reduced graphene oxide/iron oxide/silicon dioxide (rGO/Fe3O4/SiO2) nanocomposite as a potential cathode catalyst, Journal of Physics and Chemistry of Solids, 163 (2022).

DOI: 10.1016/j.jpcs.2021.110551

Google Scholar

[35] Y. R. Mukhortova, A. S. Pryadko, R. V. Chernozem, I. O. Pariy, E. A. Akoulina, I. V. Demianova, I. I. Zharkova, Y. F. Ivanov, D. V. Wagner, A. P. Bonartsev, R. A. Surmenev, and M. A. Surmeneva, Fabrication and characterization of a magnetic biocomposite of magnetite nanoparticles and reduced graphene oxide for biomedical applications, Nano-Structures and Nano-Objects, 29 (2022).

DOI: 10.1016/j.nanoso.2022.100843

Google Scholar

[36] B. A. Aragaw, Reduced graphene oxide-intercalated graphene oxide nano-hybrid for enhanced photoelectrochemical water reduction, J Nanostructure Chem, 10 (2020) 9–18.

DOI: 10.1007/s40097-019-00324-x

Google Scholar

[37] M. Yilmaz, N. Mengelizadeh, M. khodadadi Saloot, S. shahbaksh, and D. Balarak, Facile synthesis of Fe3O4/ZnO/GO photocatalysts for decolorization of acid blue 113 under solar, visible and UV lights, Mater Sci Semicond Process, 144 (2022).

DOI: 10.1016/j.mssp.2022.106593

Google Scholar

[38] A. Khalid, R. M. Ahmed, M. Taha, and T. S. Soliman, Fe3O4 nanoparticles and Fe3O4@SiO2 core-shell: synthesize, structural, morphological, linear, and nonlinear optical properties, J Alloys Compd, 947 (2023).

DOI: 10.1016/j.jallcom.2023.169639

Google Scholar

[39] S. N. Qoidah, ST. U. I. Subadra, A. Taufiq, N. Mufti, Sunaryono, N. Hidayat, E. Handoko, Mudrik Alaydrus, and Tahta Amrillah, Fe3O4/MWCNT/TiO2 nanocomposites as excellent microwave absorber material, J Alloys Compd, 970 (2024).

DOI: 10.1016/j.jallcom.2023.172590

Google Scholar

[40] S. Saleem, M. H. Jameel, A. A. Alothman, M. Z. H. Mayzan, T. Yousaf, M. R. Ahmad, A. Ali and A. Zaman, A band gap engineering for the modification in electrical properties of Fe3O4 by Cu2+ doping for electronic and optoelectronic devices applications, J Solgel Sci Technol, 109 (2024) 471–482

DOI: 10.1007/s10971-023-06287-4

Google Scholar

[41] M. S. H. Akash and K. Rehman, Essentials of pharmaceutical analysis. Springer Singapore, 2019.

DOI: 10.1007/978-981-15-1547-7

Google Scholar

[42] V. Ramar and K. Balasubramanian, Reduced Graphene Oxide/WO3 Nanorod Composites for Photocatalytic Degradation of Methylene Blue under Sunlight Irradiation, ACS Appl Nano Mater, 4 (2021) 5512–5521.

DOI: 10.1021/acsanm.1c00863

Google Scholar

[43] J. L. Aleman-Ramirez, O. Reyes-Vallejo, P. U. Okoye, R. Sanchez-Albores, A. Maldonado-Álvarez, and P. J. Sebastian, Crystal phase evolution of high temperature annealed Fe3O4-CaO catalysts for biodiesel production, Biofuels, Bioproducts and Biorefining, 17 (2023) 843–858.

DOI: 10.1002/bbb.2478

Google Scholar

[44] G. A. Alamu, P. S. Ayanlola, O. Adedokun, Y. K. Sanusi, and G. R. Fajinmi, Enhanced photovoltaic performance of green synthesized Fe3O4 nanostructures embedded in TiO2 photoanode for dye sensitized solar cells," Optik (Stuttg), 300 (2024).

DOI: 10.1016/j.ijleo.2024.171642

Google Scholar