[1]
W. H. Tan and J. Mohamad Saleh, Critical review on interrelationship of electro-devices in PV solar systems with their evolution and future prospects for MPPT applications, Energies (Basel), 16 (2023) 850.
DOI: 10.3390/en16020850
Google Scholar
[2]
A. S. Al-Ezzi and M. N. M. Ansari, Photovoltaic solar cells: a review, Applied System Innovation, 5 (2022) 67.
Google Scholar
[3]
S. S. Mousavi Ajarostaghi and S. S. Mousavi, Solar energy conversion technologies: principles and advancements, in Solar Energy Advancements in Agriculture and Food Production Systems, S. Gorjian and P. E. Campana, Eds., Academic Press, 2022, p.29–76.
DOI: 10.1016/b978-0-323-89866-9.00005-5
Google Scholar
[4]
A. (Antonio) Luque and Steven. Hegedus, Handbook of photovoltaic science and engineering. Wiley, 2011.
Google Scholar
[5]
M. V. Dambhare, B. Butey, and S. V. Moharil, Solar photovoltaic technology: A review of different types of solar cells and its future trends, in Journal of Physics: Conference Series, IOP Publishing Ltd (2021).
DOI: 10.1088/1742-6596/1913/1/012053
Google Scholar
[6]
H. Liu et al., Coupled Photochemical Storage Materials in Solar Rechargeable Batteries: Progress, Challenges, and Prospects, Adv Energy Mater, 14 (2024) 2402381.
Google Scholar
[7]
A. A. Qureshi, S. Javed, H. M. Asif Javed, A. Akram, M. Jamshaid, and A. Shaheen, Strategic design of Cu/TiO2-based photoanode and rGO-Fe3O4-based counter electrode for optimized plasmonic dye-sensitized solar cells, Opt Mater (Amst), 109 (2020).
DOI: 10.1016/j.optmat.2020.110267
Google Scholar
[8]
H. Hao, H. Pu, D. Lu, M. Zhou, B. Zhang, and X. Zhang, Core-shell like rGO coated Co9S8 hollow dodecahedron for enhanced oxygen evolution reaction, Journal of Physics and Chemistry of Solids, 196 (2025) 112318.
DOI: 10.1016/j.jpcs.2024.112318
Google Scholar
[9]
M. Imran, Md. M. Alam, S. Hussain, M. A. Ali, M. Shkir, A. Mohammad, T. Ahamad, A. Kaushik, and K. Irshad, Highly photocatalytic active r-GO/Fe3O4 nanocomposites development for enhanced photocatalysis application: A facile low-cost preparation and characterization, Ceram Int, 4 (2021) 31973–31982.
DOI: 10.1016/j.ceramint.2021.08.083
Google Scholar
[10]
H. Wu, Q. Ai, C. Yang, R. Huang, G. Jiang, J. Xiong, and S. Yuan, Preparation and electrochemical properties of Fe/Fe3O4@rGO composite nanocage with 3D hollow structure, Journal of Solid State Electrochemistry, 25 (2021) 869–879.
DOI: 10.1007/s10008-020-04865-y
Google Scholar
[11]
N. Alwadai, A. Ali, A. Liaqat, A. Fatima, M. Iqbal, A. Nazir, W. Mnif, Z. Algarni, S. Akyürekli, and M. Kaleli, Electrodeposited polyaniline modified CNT fiber as efficient counter electrode in flexible dye-sensitized solar cells, 307 (2024) 117692.
DOI: 10.1016/j.synthmet.2024.117692
Google Scholar
[12]
N. Shahzad, Lutfullah, T. Perveen, D. Pugliese, S. Haq, N. Fatima, S. M. Salman, A. Tagliaferro, and M. I. Shahzad, Counter electrode materials based on carbon nanotubes for dye-sensitized solar cells, Elsevier Ltd. (2022).
DOI: 10.1016/j.rser.2022.112196
Google Scholar
[13]
R. Tarcan, O. Todor-Boer, I. Petrovai, C. Leordean, S. Astilean, and I. Botiz, Reduced graphene oxide today, Royal Society of Chemistry. (2020).
DOI: 10.1039/c9tc04916a
Google Scholar
[14]
A. A. Qureshi, S. Javed, H. M. A. Javed, A. Akram, M. S. Mustafa, U. Ali, and M. Z. Nisar, Facile formation of SnO2–TiO2 based photoanode and Fe3O4@rGO based counter electrode for efficient dye-sensitized solar cells, Mater Sci Semicond Process, 123 (2021).
DOI: 10.1016/j.mssp.2020.105545
Google Scholar
[15]
R. Eivazzadeh-Keihan, Z. Sadat, F. Lalebeigi, N. Naderi, L. Panahi, F. Ganjali, S. Mahdian, Z. Saadatidizaji, M. Mahdavi, E. Chidar, E. Soleimani, A. Ghaee, A. Maleki, and I, Zare, Effects of mechanical properties of carbon-based nanocomposites on scaffolds for tissue engineering applications: a comprehensive review, Nanoscale Adv, (2024).
DOI: 10.1039/d3na00554b
Google Scholar
[16]
B. Maleki and H. Esmaeili, Application of Fe3O4/SiO2@ZnO magnetic composites as a recyclable heterogeneous nanocatalyst for biodiesel production from waste cooking oil: Response surface methodology, Ceram Int, 49 (2023) 11452–11463.
DOI: 10.1016/j.ceramint.2022.11.344
Google Scholar
[17]
S. Ananthi, M. Kavitha, E. R. Kumar, A. Balamurugan, Y. Al-Douri, H. K. Alzahrani, A. A. Keshk, T. M. Habeebullah, S. H. Abdel-Hafez, and N. M. El-Metwaly, Natural tannic acid (green tea) mediated synthesis of ethanol sensor based Fe3O4 nanoparticles: Investigation of structural, morphological, optical properties and colloidal stability for gas sensor application, Sens Actuators B Chem, 352 (2022).
DOI: 10.1016/j.snb.2021.131071
Google Scholar
[18]
N. M. El-Shafai, M. M. Abdelfatah, M. E. El-Khouly, I .M. El-Mehasseb, A. El-Shaer, M. S. Ramadan, M. S. Masoud, dan M. A. El-Kemary, Magnetite nano-spherical quantum dots decorated graphene oxide nano sheet (GO@Fe3O4): Electrochemical properties and applications for removal heavy metals, pesticide and solar cell, Appl Surf Sci, 506 (2020) 144896.
DOI: 10.1016/j.apsusc.2019.144896
Google Scholar
[19]
F. Habibi, M. Seyyedi, and B. Ayati, Synthesis and application of reusable and magnetic rGO/Fe3O4 nanocomposites in BR46 removal from an aqueous solution; future prospects of an efficient adsorption platform, J Mater Environ Sci, 13 (2022) 900–913.
Google Scholar
[20]
J. Jagiello, A. Chlanda, M. Baran, M. Gwiazda, and L. Lipinska, Synthesis and Characterization of Graphene Oxide and Reduced Graphene Oxide Composites with Inorganic Nanoparticles for Biomedical Applications, Nanomaterials, 10 (2020) 1–19.
DOI: 10.3390/nano10091846
Google Scholar
[21]
N. A. Devi, S. Nongthombam, S. Sinha, R. Bhujel, S. Rai, W. I. Singh, P. Dasgupta, B. P. Swain, Investigation of chemical bonding and supercapacitivity properties of Fe3O4-rGO nanocomposites for supercapacitor applications, Diam Relat Mater, 104 (2020).
DOI: 10.1016/j.diamond.2020.107756
Google Scholar
[22]
L. Shen, J. Dong, B. Wen, X. Wen, and J. Li, Facile Synthesis of hollow Fe3O4-rGO nanocomposites for the electrochemical detection of acetaminophen, Nanomaterials, 13 (2023) 707.
DOI: 10.3390/nano13040707
Google Scholar
[23]
W. Wang, J. Yao, and G. Li, Dual-functional Fe3O4@N-rGO catalyst as counter electrode with high performance in dye-sensitized solar cells, Journal of Electroanalytical Chemistry, 823 (2018) 261–268.
DOI: 10.1016/j.jelechem.2018.06.019
Google Scholar
[24]
M. Liu, Y. Ye, J. Ye, T. Gao, D. Wang, G. Cheng, dan Z. Song, Recent Advances of Magnetite (Fe3O4)-Based Magnetic Materials in Catalytic Applications, MDPI, (2023).
DOI: 10.3390/magnetochemistry9040110
Google Scholar
[25]
W. Li, B. Li, Y. Zhao, X. Wei, and F. Guo, Facile synthesis of Fe3O4 nanoparticles/reduced graphene oxide sandwich composites for highly efficient microwave absorption, J Colloid Interface Sci, 645 (2023) 76–85.
DOI: 10.1016/j.jcis.2023.04.131
Google Scholar
[26]
M. E. Naghani, M. Neghabi, M. Zadsar, and H. Abbastabar Ahangar, Synthesis and characterization of linear/nonlinear optical properties of graphene oxide and reduced graphene oxide-based zinc oxide nanocomposite, Sci Rep, 13 (2023).
DOI: 10.1038/s41598-023-28307-7
Google Scholar
[27]
B. M. Chufa, B. A. Gonfa, T. Y. Anshebo, and G. A. Workneh, A Novel and Simplest Green Synthesis Method of Reduced Graphene Oxide Using Methanol Extracted Vernonia Amygdalina: Large-Scale Production, Advances in Condensed Matter Physics, 2021 (2021).
DOI: 10.1155/2021/6681710
Google Scholar
[28]
R. Yang, Y. Wang, Q. Deng, P. Hui, Z. Lou, Y. Yang, and L. Wang, Metal–organic framework derived Fe3O4/C/rGO composite as an anode material in lithium-ion batteries, Ionics (Kiel), 27 (2021) 3281–3289.
DOI: 10.1007/s11581-021-04143-5
Google Scholar
[29]
P. W. Chi, T. Paul, Y. Su, C. Su, P. M. Wu, S. Wang, dan M. Wu, A study on Ti-doped Fe3O4 anode for Li ion battery using machine learning, electrochemical and distribution function of relaxation times (DFRTs) analyses, Sci Rep, 12 (2022).
DOI: 10.1038/s41598-022-08584-4
Google Scholar
[30]
Isah, A. A., Shitu, I. G., Muhammad, D., Adamu, S. B., Katibi, K. K., Iya, S. G. D., and Chiromawa, I. M, Bridging Simulation and Experiment: Crystallite Size and Microstrain Analysis of Magnetite (Fe3O4) Nanoparticles, (2024).
Google Scholar
[31]
C. Bulin, T. Guo, J. Bao, G. Xin, J. Song, and R. Zheng, A novel strategy towards controllable fabrication of Fe3O4-partially reduced graphene oxide based on restricted hydrolysis in mixed solvent, Surfaces and Interfaces, 51 (2024).
DOI: 10.1016/j.surfin.2024.104804
Google Scholar
[32]
A. Khodadadi, M. R. Talebtash, and M. Farahmandjou, Effect of PVA/PEG-coated Fe3O4 Nanoparticles on the Structure, Morphology and Magnetic Properties, Physical Chemistry Research, 10 (2022) 537–547.
Google Scholar
[33]
M. Hamid, M. Rianna, W. R. Rangkuti, T. Sembiring, and P. Sebayang, Study and characterization rGO/Fe3O4 in microstructure and - magnetic properties, S Afr J Chem Eng, 42 (2022) 280–282.
DOI: 10.1016/j.sajce.2022.08.008
Google Scholar
[34]
F. Yusoff, K. Suresh, and W. M. Khairul, Synthesis and characterization of reduced graphene oxide/iron oxide/silicon dioxide (rGO/Fe3O4/SiO2) nanocomposite as a potential cathode catalyst, Journal of Physics and Chemistry of Solids, 163 (2022).
DOI: 10.1016/j.jpcs.2021.110551
Google Scholar
[35]
Y. R. Mukhortova, A. S. Pryadko, R. V. Chernozem, I. O. Pariy, E. A. Akoulina, I. V. Demianova, I. I. Zharkova, Y. F. Ivanov, D. V. Wagner, A. P. Bonartsev, R. A. Surmenev, and M. A. Surmeneva, Fabrication and characterization of a magnetic biocomposite of magnetite nanoparticles and reduced graphene oxide for biomedical applications, Nano-Structures and Nano-Objects, 29 (2022).
DOI: 10.1016/j.nanoso.2022.100843
Google Scholar
[36]
B. A. Aragaw, Reduced graphene oxide-intercalated graphene oxide nano-hybrid for enhanced photoelectrochemical water reduction, J Nanostructure Chem, 10 (2020) 9–18.
DOI: 10.1007/s40097-019-00324-x
Google Scholar
[37]
M. Yilmaz, N. Mengelizadeh, M. khodadadi Saloot, S. shahbaksh, and D. Balarak, Facile synthesis of Fe3O4/ZnO/GO photocatalysts for decolorization of acid blue 113 under solar, visible and UV lights, Mater Sci Semicond Process, 144 (2022).
DOI: 10.1016/j.mssp.2022.106593
Google Scholar
[38]
A. Khalid, R. M. Ahmed, M. Taha, and T. S. Soliman, Fe3O4 nanoparticles and Fe3O4@SiO2 core-shell: synthesize, structural, morphological, linear, and nonlinear optical properties, J Alloys Compd, 947 (2023).
DOI: 10.1016/j.jallcom.2023.169639
Google Scholar
[39]
S. N. Qoidah, ST. U. I. Subadra, A. Taufiq, N. Mufti, Sunaryono, N. Hidayat, E. Handoko, Mudrik Alaydrus, and Tahta Amrillah, Fe3O4/MWCNT/TiO2 nanocomposites as excellent microwave absorber material, J Alloys Compd, 970 (2024).
DOI: 10.1016/j.jallcom.2023.172590
Google Scholar
[40]
S. Saleem, M. H. Jameel, A. A. Alothman, M. Z. H. Mayzan, T. Yousaf, M. R. Ahmad, A. Ali and A. Zaman, A band gap engineering for the modification in electrical properties of Fe3O4 by Cu2+ doping for electronic and optoelectronic devices applications, J Solgel Sci Technol, 109 (2024) 471–482
DOI: 10.1007/s10971-023-06287-4
Google Scholar
[41]
M. S. H. Akash and K. Rehman, Essentials of pharmaceutical analysis. Springer Singapore, 2019.
DOI: 10.1007/978-981-15-1547-7
Google Scholar
[42]
V. Ramar and K. Balasubramanian, Reduced Graphene Oxide/WO3 Nanorod Composites for Photocatalytic Degradation of Methylene Blue under Sunlight Irradiation, ACS Appl Nano Mater, 4 (2021) 5512–5521.
DOI: 10.1021/acsanm.1c00863
Google Scholar
[43]
J. L. Aleman-Ramirez, O. Reyes-Vallejo, P. U. Okoye, R. Sanchez-Albores, A. Maldonado-Álvarez, and P. J. Sebastian, Crystal phase evolution of high temperature annealed Fe3O4-CaO catalysts for biodiesel production, Biofuels, Bioproducts and Biorefining, 17 (2023) 843–858.
DOI: 10.1002/bbb.2478
Google Scholar
[44]
G. A. Alamu, P. S. Ayanlola, O. Adedokun, Y. K. Sanusi, and G. R. Fajinmi, Enhanced photovoltaic performance of green synthesized Fe3O4 nanostructures embedded in TiO2 photoanode for dye sensitized solar cells," Optik (Stuttg), 300 (2024).
DOI: 10.1016/j.ijleo.2024.171642
Google Scholar