CSVT as a Technique to Obtain Nanostructured Materials: WO3-x

Article Preview

Abstract:

The growth of tungsten oxide nanowires on silicon substrates without using any catalyst is demonstrated by means of close-spaced vapor transport (CSVT) technique at atmospheric pressure. The source was formerly prepared from a tungsten foil to produce a tungsten oxide film. CSVT array is completed with silicon substrates located at a distance of ~350 m over the tungsten oxide source at moderate temperatures (~750°C). Two distinct kinds of nanostructures were produced; a uniform distribution of free standing tungsten oxide wires of several micrometers in length with diameters less than 150 nm; and wires assembled to form nanowire bundle. The X-ray diffraction characterizations show that the phases of WO2.7 and WO2.9 are present.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

31-37

Citation:

Online since:

February 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B.B. Cao, J.J. Chen, X.J. Tang and W.L. Zhou: J. Mat. Chem. 19 (2009)2323-2327.

Google Scholar

[2] Y.S. Kim: Sensors and Actuators B: Chemical 137 (2009)297-304.

Google Scholar

[3] Y.X. Xu, Z.L. Tang, Z.T. Zhang, Y.M. Ji and Z.G. Zhou: Sensors Letters 6 (2008) 938941.

Google Scholar

[4] C.S. Rout, M. Hedge and C.N.R. Rao: Sensors and Actuators B: Chemical 128 (2008) 488493.

Google Scholar

[5] C. Tao, S.P. Ruan, G.H. Xie, X.Z. Kong, L. Shen, F.X. Meng, C.X. Liu, X.D. Zhang, W. Dong and W. Y. Chen: Appl. Phys. Lett. 94 (2009)043311.

DOI: 10.1063/1.3076134

Google Scholar

[6] C.M. White, D.T. Gillaspie, E. Whitney, S-H. Lee and A.C. Dillon: Thin Solid Films 517 (2009)3596-3599.

DOI: 10.1016/j.tsf.2009.01.033

Google Scholar

[7] W.H. Lai, Y.H. Su, L.G. Teoh, Y.T. Tsai and M.H. Hon: Mater. Transactions 48 (2007) 1575-1577.

Google Scholar

[8] W.H. Lai, M.H. Hon, L.G. Teoh, Y.H. Su, J. Shieh and C.K. Chen: J. Electronic Mat. 37 (2008) 1082-1087.

Google Scholar

[9] M-T. Chang, L-J. Chou, Y-L. Chueh, Y-C. Lee, C-H. Hsieh, L-J. Chen, Y-W. Lan and CD. Chen: Small 3 (2007) 658-64.

Google Scholar

[10] K. Huang, Q. Pan, F. Yang, S. Ni and D. He: Physica E 39 (2007) 219-222.

Google Scholar

[11] C. Bock and B. MacDougall: Electrochimica Acta 47 (2002) 3361-3373.

Google Scholar

[12] J. Polleux, A. Gurlo, N. Barsan, U. Weimar, M. Antonietti and M. Niederberger: Chem. Int. Ed. 45 (2006) 261-265.

DOI: 10.1002/anie.200502823

Google Scholar

[13] K. Hong, M. Xie and H. Wu: Nanotechnology 17 (2006) 4830-4833.

Google Scholar

[14] J. Zhou, Y. Ding, S.Z. Deng, L. Gong, N.S. Xu and Z. L. Wang: Adv. Mater. 17 (2005) 2107-2110.

Google Scholar

[15] Y. Baek and K. Yong. J. Phys. Chem. C 111 (2007) 1213-1218.

Google Scholar

[16] M. Feng, A.L. Pan, H.R. Zhang, Z.A. Li, F. Liu, H.W. Liu, D.X. Shi, B.S. Zou and H.J. Gao: Appl. Phys. Lett. 86 (2005) 141901.

Google Scholar

[17] G. Gu, B. Zheng, W.Q. Han, S. Roth and J. Liu: Nano Lett. 2 (2002) 849-851.

Google Scholar

[18] H. Zhang, M. Feng, F. Liu, L. Liu, H. Chen, H. Gao and J. Li: Chem. Phys. Lett. 389 (2004) 337-341.

Google Scholar

[19] S. Li and M. Samy El-Shall: Applied Surface Science 127 (1998) 330-338.

Google Scholar

[20] D.Y. Lu, J. Chen, J. Zhou, S.Z. Deng, N.S. Xu and J.B. Xu: J. Raman Spectrosc. 38 (2007) 176-180.

Google Scholar

[21] S. Pal and C. Jacob: J. Mater Sci. 41 (2006) 5429-5432.

Google Scholar

[22] S. Vaddiraju, H. Chandrasekaran and M.K. Sunkara: J. Am. Chem. Soc. 125 (2003) 10792-10793.

DOI: 10.1021/ja035868e

Google Scholar

[23] J. Thangala, S. Vaddiraju, R. Bogale, R. Thurman, T. Powers, B. Deb and M. K. Sunkara: Small 3 (2007) 890 - 896.

DOI: 10.1002/smll.200600689

Google Scholar

[24] A.H. Mahan, P.A. Parilla, K.M. Jones and A. C. Dillon: Chem. Phys. Lett. 413 (2005) 88- 94.

Google Scholar

[25] Z. Liu, Y. Bando and C. Tang: Chem. Phys. Lett. 372 (2003) 179-182.

Google Scholar

[26] Y.Q. Zhu, W. Hu, W-K. Hsu, M. Terrones, N. Grobert, J.P. Hare, H.W. Kroto, D.R.M. Walton and H. Terrones: Chem. Phys. Lett. 309 (1999) 327-334.

DOI: 10.1016/s0009-2614(99)00732-0

Google Scholar

[27] F. Chávez, J. Mimila, F. Bailley and J. C. Bourgoin: J. Appl. Phys. 54 (1983) 6646.

Google Scholar

[28] B.A. Lombos, D. Côté, J.P. Dodelet, M.F. Lawrence and J.I. Dickson: J. Crystal Growth 79 (1986) 455-462.

DOI: 10.1016/0022-0248(86)90477-x

Google Scholar

[29] F. Chávez, D. Villegas and J. Mimila: Mat. Res. Soc. Symp. Proc. 37 (1985)135-139.

Google Scholar

[30] C. Felipe, F. Chávez, C. Ángeles-Chávez, E. Lima, O. Goiz and R. Peña-Sierra: Chem. Phys. Lett. 439 (2007) 127-131.

DOI: 10.1016/j.cplett.2007.03.072

Google Scholar

[31] C-H. Chen, S-J. Wang, R-M. Ko, Y-C. Kuo, K-M. Uang, T-M. Chen, B-W. Liou and H-Y. Tsai: Nanotechnology 17 (2006) 217-223.

Google Scholar

[32] S-J. Kim, W-J. Lee, B-C. Shin, I-S. Kim and G-H. Lee: Jpn. J. Appl. Phys. 44 (2005) 739- 741.

Google Scholar

[33] M. Kitano, T. Hamabe, S. Maeda and T. Okabe: J. Cryst. Growth 108 (1991) 277-284.

Google Scholar