Heat Transfer Enhanced in Water Containing TiO2 Nanospheres

Article Preview

Abstract:

In the present work, nanofluids containing spherical TiO2 nanoparticles were mixed in water, to have various concentrations with the average particle diameter of 81.3 nm. Scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction techniques were used to characterize the TiO2 nanoparticles. Photothermal techniques, thermal lens spectrometry (TLS) and photopyroelectric (PPE) were used to measure the thermal diffusivity and thermal effusivity of the nanofluids respectively. The experimental results show that the thermal diffusivity (D) increased with the increase in TiO2 nanoparticle concentration. It was also possible to see that thermal effusivity (e) had a similar behavior as the thermal diffusivity, where both the values increased with the concentration rate and finally a comparison with literature values show good agreement with the thermal parameters of water.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

55-60

Citation:

Online since:

February 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Chen, J. Zhang: J. Nanosci. Nanotech. 6 (2006)1159-1166.

Google Scholar

[2] Q. Zhong Xue: Phys. Lett. A. 307 (2003)313-317.

Google Scholar

[3] S. Lee, S.U.S. Choi, S. Li, J.A. Eastamn: J. Heat Transfer. 121 (1999)280-289.

Google Scholar

[4] D. Hwang Yoo, K.S. Hong, H. Soon Yang: Thermochimica Acta 455 (2007)66-69.

Google Scholar

[5] X. Wang; X. Xu, S.U.S. Choi: J. Thermophys. Heat Transfer. 13 (1999)474-480.

Google Scholar

[6] T.K. Hong, C. Choi, H.S. Yang: J. Appl. Phys. 97 (2005)64311-01-64311-04.

Google Scholar

[7] J. Shen, R.D. Lowe, and R.D. Snook: Chem. Phys. 165 (1992)385-396.

Google Scholar

[8] D. Dadarlat, C. Neamtu, E. Surducan, A. Hardj Sahraoui, S. Longuemart, D. Bicamic: Instrum. Sci. Technol. 30 (2002)387-396.

DOI: 10.1081/ci-120015447

Google Scholar

[9] J. Caerels, C. Glorieux, J. Thoen: Instrum. Sci. Technol. 69 (1998)2452-2458.

Google Scholar

[10] J.L. Jiménez Pérez, J.F. Sánchez Ramírez, R. Gutiérrez Fuentes, A. Cruz Orea, J.L. Herrera Pérez: Brazilian Journal of Physics 36 (2006)1025-1028.

DOI: 10.1590/s0103-97332006000600060

Google Scholar

[11] X. Jian, T. Herricks, Y. Xia: Adv. Mater. 15 (2003)1205-1209.

Google Scholar

[12] J. H. Jean, T.A. Ring: Colloids Surf. 29 (1988) 273-291.

Google Scholar

[13] J. F. Sánchez-Ramírez, J. L. Jiménez Pérez, A. Cruz Orea, R. Gutierrez Fuentez, A. BautistaHernández, and U. Pal: J. Nanosc. Nanotechnol. 6 (2006) 685-690.

Google Scholar

[14] P.R.B. Pedreira, L. Hirsch, J.R. D. Pereira, A.N. Medina, A.C. Bento, M.L. Baesso: Instrum. Sci. Technol. 74 (2003)808-810.

Google Scholar

[15] R.C. Weast, Handbook of Chemistry and Physics 67 ed. (Chemical Rubber Corp., Boca Raton, FL., 1986-1987).

Google Scholar