Microstructure and Mechanical Properties of Nano-Crystalline Al-Mg-Mn System

Article Preview

Abstract:

Nano - crystalline Al-Mg-Mn was synthesized by ball milling technique. Microstructure of these alloys has been studied from X-ray line broadening. The crystallite size of nano - crystalline Al-Mg-Mn system decreases by increasing the Mg content, While the micro-strain, median diameter,, and geometrical standard deviations,  increases by increasing the Mg content. Micro-hardness of our system has been investigated by Vickers hardness test. The hardness increases by increasing the Mg content.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

61-68

Citation:

Online since:

February 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.B. Burger, A.K. Gupta, P.W. Jeffrey and D.J. Lloyd: Mater. Charact. 35(1995) 23.

Google Scholar

[2] Z. Zhu and M.J. Starink: Mater. Sci. Eng. A. 489 (2008)138.

Google Scholar

[3] M. Popovic and E. Romhanji: J. Mater. Proc. Technol. 125 126 (2002) 275.

Google Scholar

[4] S. Lathabai and P.G. Lloyd: Acta Materialia 50 (2002) 4275.

Google Scholar

[5] J. Courbon: Mater. Sci. Forum 331-337 (2000) 17.

Google Scholar

[6] J. Courbon: Scr. Mater. 48 (2003) 1519.

Google Scholar

[7] Z. Zhu and M. J: Starink Mater. Sci. Eng. A. 488 (2008) 125.

Google Scholar

[8] Horita Z, Fujinami T, Nemoto M and Langdon TG: Metall Mater Trans. A 31A (2000) 691.

Google Scholar

[9] Jiang Li Ning, Da Ming Jiang, Xi Gang Fan, Zhong Hong Lai, Qing Chang Meng and Dian Liang Wang: Mater. Charact. 59 (2008) 306.

Google Scholar

[10] Chang SY, Ahn BD, Hong SK and Kamado S: J Alloy Compd. 386 (2005)197.

Google Scholar

[11] Jiang Li Ning and Da Ming Jiang: Mater. Sci. Eng. A. 452-453 (2007) 552.

Google Scholar

[12] Dupuy L and Blandin J: J. Acta Mater. 50 (2002) 3251.

Google Scholar

[13] M. Yun, S. Lokyer and J.D. Hunt: Mater. Sci. Eng. A. 280A (2000) 116.

Google Scholar

[14] C. Gras, M. Meredith, K. Gatenby and J.D. Hunt: Mater. Sci. For. 396-402 (2002) 89.

Google Scholar

[15] S.A. Lockyer, M. Yun, J.D. Hunt and D.V. Edmonds: Mater. Charac. 37 (1996) 301.

Google Scholar

[16] Ch. Gras, M. Meredith and J.D. Hunt: J. Mater. Process. Technol. 169 (2005) 1565.

Google Scholar

[17] T. Haga and S. Suzuki: J. Mater. Process. Technol. 137 (2003) 92.

Google Scholar

[18] T. Haga, T. Nishiyama and S. Suzuki: J. Mater. Process. Technol. 133 (2003) 103.

Google Scholar

[19] R. Wechsler and Scand: J. Metall. 32 (2003) 56.

Google Scholar

[20] R. A. Varin, J. Bystrzycki and A. Calka: Intermetallics. 7 (1999) 917.

Google Scholar

[21] R . Hambleton, H. Jones and W. M. Rainforth: Mat. Sci. Eng. A 226-228 (1997)157.

Google Scholar

[22] P. Scherrer: Gottinge Nachichten 2 (1918) 98.

Google Scholar

[23] G. K. Williamson and W. H. Hall: Acta Met. 1 (1953) 22.

Google Scholar

[24] B. E. Warren and B. L. Averbach: J. Appl. Phys. 23 (1952)497.

Google Scholar

[25] B. E. Warren: X-ray diffraction,. (1968), chapter 3.

Google Scholar

[26] C. E. Krill and R. Birringer: Philos. Mag. A 77 (1998) 621.

Google Scholar

[27] H. Gleiter: Prog. Mater. Sci. 33 (1989) 223.

Google Scholar

[28] M. S. Choudry, M. Dollar and J. A. Eastman: Mat. Sci. Eng. A256 (1998) 25.

Google Scholar

[29] H. Natter, M. Schmelzer, M. S. Löffler, C. E. Krill, A. Fitch and R. Hemplmann: J. Phys. Chem. 104 (2000) 2467.

Google Scholar

[30] J. Gubicza, M. Kassem and T. Ungár: http: / www. Material Science. net/ 878849 -935-0/103. htm.

Google Scholar

[31] H. H. Tian and M. Atzmon: Phil. Mag. A 79 (1999) 1769.

Google Scholar

[32] V. Haas and R. Birringer: Nanostruct. Mater. 1 (1992) 491.

Google Scholar

[33] H. Natter and R. Hempelmann: J. Phys. Chem. 100 (1996) 19525.

Google Scholar

[34] H. Natter, M. Schmelzer and R. Hempelmann: J. Mater. Res. 13 (1998) 1186.

Google Scholar

[35] Ch. Beck, W. Härtl and R. Hempelmann: J. Mater. Res. 13 (1998) 3174.

Google Scholar

[36] Ch. Beck, W. Härtl and R. Hempelmann: Angew. Chem. 111 (1999) 1380.

Google Scholar

[37] R. A. Varin, D. Wexler, A. Calka and L. Zbroniec: Intermetallics 6 (1998) 547.

Google Scholar

[38] C. Suryanarayana: Int. Mater. Rev. 40 (1995) 42.

Google Scholar

[39] M. Abou Zied and A.A. Ebenalwaled: Intermetallics 16 (2008) 745.

Google Scholar