Formation of SiOF Films by APCVD Using TEOS-O3-HF Gas Mixture

Article Preview

Abstract:

Fluorinated silicon oxide (SiOF) films have been prepared in a conventional atmospheric pressure chemical vapor deposition (APCVD) reactor. APCVD technique utilizes tetraethoxysilane, ozone and hydrofluoric anhydride as gas sources. SiOF films are deposited by changing the temperature of deposit. Substrate holder was maintained in the temperature range of 200 to 275°C. Films were characterized based on the deposition temperature. Chemical bonding structure of the films was evaluated by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and ellipsometry techniques. FTIR spectra revealed Si-F bond at about 935 cm-1. Incorporation of fluorine has a minimal contribution in the reduction of refractive index of SiOF films from 1.46 to 1.35.Therefore, the main mechanism responsible for this reduction of refractive index is the porosity generated by incorporation of fluorine atom in the SiOF films. Dielectric constant was reduced from 4.2 corresponding to that of SiO2 films, to the values in the range of 3.18 to 3.6 for SiOF films deposited by APCVD technique.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

39-43

Citation:

Online since:

February 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. C. Alonso, X. M. Díaz, E. Pichardo, L. Rodríguez and A. Ortiz: Thin Solid Films 474 (2005) 294.

Google Scholar

[2] K. Matsuda, Y. Yamaguchi, N. Morita, T. Matsunobe and M. Yoshikawa: Thin Solid Films 515 (2007) 6682.

DOI: 10.1016/j.tsf.2007.01.056

Google Scholar

[3] T. Homma, R. Yamaguchi and Y. Murao: J. Electrochem. Soc. 3 (1993) 687.

Google Scholar

[4] H. Juárez, T. Díaz, M. Pacio, G. García, E. Rosendo, M. Rubin, G. Romero, A. García, and C. Morales: Phys. Stat. Sol. C 4 (2007) 1484.

Google Scholar

[5] S. M. Han and E. S. Aydil: J. Appl. Phys. 83 (1998) 2172.

Google Scholar

[6] T. Usami, K. Shimokawa and M. Yoshimaru: Jpn. J. Appl. Phys. 33 1 (1994) 408.

Google Scholar

[7] V. Pankov, J. C. Alonsa and A. Ortiz: J. Appl. Phys. 86 (1999) 275.

Google Scholar

[8] H. Juárez, T. Díaz, M. Cuamatzi, E. Rosendo, J. Martínez, M. Pacio, J. A. García, and J. C. Pacheco: X Workshop IBERCHIP, Cartagena de Indias, Colombia, 10-12 March (2004).

Google Scholar

[9] M. G. M. Van der Vis, R. J. M. Konings, A. Oskam and T. L. Snoeck: J. Mol. Struct. 47 (1992) 274.

Google Scholar

[10] P. F. Wang, S. J. Ding, D. W. Zhang, J, T. Wang and W. W. Lee: Thin Solid Films 385 (2001) 115.

Google Scholar

[11] R. A. Orozco, B. P. Gorman, D. W. Muller, M. R. Baklanov, and R. F. Reidy: Thin Solid Films 471 (2005) 145.

Google Scholar

[12] J. S. Chou and S. C. Lee: J. Appl. Phys. 77 (1995) 1805.

Google Scholar

[13] W. J. Chang, M. P. Houng and Y. H. Wang: Jpn. J. Appl. Phys. 38 (1999) 4642.

Google Scholar

[14] F. L. Galeener: J. Non-Cryst Solids 49 (1982) 53.

Google Scholar

[15] F. L. Galeener, R. A. Barrio, E. Martinez and R. J. Elliott: Phys. Rev. Lett. 53 (1984)2924.

Google Scholar

[16] M. Adachi, K. Okuyama, N. Tohge, M. Shimada, J. I. Satoh and M. Muroyama: Jpn. J. Appl. Phys. 31 (1992) L1439.

DOI: 10.1143/jjap.31.l1439

Google Scholar

[17] T. Tamura, J. Sakai, Y. Inoue, M. Satoh and Yoshitaka: Jpn. J. Appl. Phys. 37 (1998) 2411.

Google Scholar

[18] J. H. Lee and C. K. Hwangbo: Surf. Coat. Technol. 128-129 (2000) 9280.

Google Scholar

[19] M. K. Bhan, J. Huang and D. Cheung: Thin Solid Films 308-309 (1997) 507.

Google Scholar

[20] G. Power, J. K. Vij and M. Shaw: J. Phys. D: Appl. Phys. 37 (2004)1362.

Google Scholar