Direct Determination of the Photoelectron Momentum Distribution from the Wave Function

Article Preview

Abstract:

This study examines the phenomenon of electron ionization induced by the excitation of hydrogen atoms using a short laser pulse. We determined the temporal probability density distribution of electrons ejected from the atom and scattered in the continuum upon ionization of an atom by a short laser pulse, demonstrating that the electron probability density has increased radially. Based on Born's interpolation and Kemble's imaging theorem , the photoelectron momentum distribution found by square rooting the wave function's modulus matches the results found using the ionization amplitude, which is a standard method in quantum mechanics. We show that we can directly determine the differential ionization cross-section for the time-dependent one-electron wave function without considering spatial integrals for finding the ionization amplitude. It makes the work easier because it gets rid of the need to create a scattered wave function, which is needed to figure out the results that show how atomic and molecular photoelectron momentum is spread out in modern labs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

11-18

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y Huismans 1, A Rouzée, A Gijsbertsen, J H Jungmann, A S Smolkowska, P S W M Logman,  F Lépine, C Cauchy, S Zamith, T Marchenko, J M Bakker, G Berden, B Redlich, A F G van der Meer, H G Muller, W Vermin, K J Schafer, M Spanner, M Yu Ivanov, O Smirnova, D Bauer, S V Popruzhenko, M J J Vrakking, Time-resolved holography with photoelectrons, ScienceVol. 331, No. 6013, 2011Science 331, 61 (2011).

DOI: 10.1126/science.1198450

Google Scholar

[2] G. Porat, G. Alon, S. Rozen, O. Pedatzur, M. Krüger, D.Azoury, A. Natan, G. Orenstein, B. D. Bruner, M. J. J. Vrakking, and N. Dudovich, Attosecond time-resolved photoelectron holography, Nat. Commun. 9, 2805 (2018).

DOI: 10.1038/s41467-018-05185-6

Google Scholar

[3] M. Li, H. Xie, W. Cao, S. Luo, J. Tan, Y. Feng, B. Du, W. Zhang,Y. Li, Q. Zhang, P. Lan, Y. Zhou, and P. Lu, Photoelectron Holographic Interferometry to Probe the Longitudinal Momentum Offset at the Tunnel Exit, Phys. Rev. Lett. 122,183202 (2019).

DOI: 10.1103/physrevlett.122.183202

Google Scholar

[4] Alexei N.Grum- Grzhimailo, and E.V. Gryzlova, Photoelectron angular distributions and correlations in sequential double and triple atomic ionization by free electron lasers, Phys.Rev. A 89, 043424 (2015)

DOI: 10.1080/09500340.2015.1047805

Google Scholar

[5] A. K. Kazansky, I. P. Sazhina, and N.M. Kabachnik, Angle - resolved electron spectra in short-pulse two-color XUV+IR photoionization of atoms, Phys. Rev.A82, 033420 (2010).

DOI: 10.1103/physreva.82.033420

Google Scholar

[6] M. Klaiber, K. Z. Hatsagortsyan, and C. H. Keitel, Tunneling Dynamics in Multiphoton Ionization and Attoclock Calibration Phys. Rev.Lett. 114, 083001 (2015).

DOI: 10.1103/physrevlett.115.079904

Google Scholar

[7] K. J. Schafer, B.Yang, L. F. DiMauro, andK. C.Kulander, Above threshold ionization beyond the high harmonic cutoff, Phys.Rev. Lett. 70, 1599 (1993).

DOI: 10.1103/physrevlett.70.1599

Google Scholar

[8] X.M. Tong, K. Hino, and N.Toshima, Phase-dependent atomic ionization in few-cycle intense laser fields, Phys. Rev. A 74,031405(R) (2006).

DOI: 10.1103/physreva.74.031405

Google Scholar

[9] Y. Huismans, A. Rouzee, A, Gijsberten, P.S. W.M. Logman, at all, Photoelectron angular distributions from the ionization of xenon Rydberg states by midinfrared radiation, Phys.Rev. A87, 033413 (2013)

DOI: 10.1103/physreva.87.033413

Google Scholar

[10] M.Schuricke, G.Zhu, J.Steinmann, K. Simeonidis A.N. Grum-Grzhimailo, Strong-field ionization of lithium, Phys.Rev A83, 023413 (2011)

DOI: 10.1103/physreva.83.023413

Google Scholar

[11] Z. Chen, Toru Morishita, A. T. Le, M. Wickenhauser, X. M. Tong and C. D. Lin," Analysis of two-dimensional photoelectron momentum sepctra and the effect of long-range Coulomb potential in single ionization of atoms by intense lasers", Phys. Rev. A74, 053405 (2006)

DOI: 10.1103/physreva.74.053405

Google Scholar

[12] U.De Giovannini, D.Varsano, M.A.L, Marques, H.Appel, E.K. Gross and Rubio Ab initio angle- and energy-resolved photoelectron spectroscopy with time-dependent density-functional theory, Phys.Rev. A85, 062515 (2012)

DOI: 10.1103/physreva.85.062515

Google Scholar

[13] Mitsuko Murakami, Shih I Chu Multielectron effects in the photoelectron momentum distribution of noble-gas atoms driven by visible-to-infrared-frequency laser pulses: A time-dependent density-functional-theory approach, Phys.Rev A95, 053419 (2017)

DOI: 10.1103/physreva.95.053419

Google Scholar

[14] T. Remetter, P. Johnsson, J. Mauritsson, K. Varjú, Y. Ni, F.Epine, E. Gustafsson, M. Kling, J. Khan, R. López-Martens,K. Schafer, M. Vrakking, and A. L'Huillier, Attosecond electron wave packet interferometry, Nat. Phys. 2, 323-326, (2006).

DOI: 10.1038/nphys290

Google Scholar

[15] G.P. Zhang, H.P. Zhu, Y.H. Bai, J. Bonacum, X. S. Wu, and T. F. George, Imaging superatomic molecular orbitals in a C60 molecule through four 800-nm photons, Int. J. Mod. Phys. B 29, 1550115 (2015).

DOI: 10.1142/s0217979215501155

Google Scholar

[16] Mitsuko Murakami, Guo-Ping Zhang, Observation of attosecond electron dynamics in the photoelectron momentum distribution of atoms using few-cycle laser pulses , Physical review A 101, 053439 (2020)

DOI: 10.1103/physreva.101.053439

Google Scholar

[17] X. M. Tong , K. Hino , N. Toshima et all,Computational methods for laser-atom interactions, Journal of Physics, Conference Series 88, 012047, (2007)

DOI: 10.1088/1742-6596/88/1/012047

Google Scholar

[18] J.H. Macek, "Origin, Evolution and Imaging of vortices in atomic processes" AIP Conf. Proc. 13368 138-141 (2011)

Google Scholar

[19] James M Feagin, John S Briggs, Classical hallmarks of macroscopic quantum wave function propagation, J. Phys. B: At. Mol. Opt. Phys. 50 (2017)

DOI: 10.1088/1361-6455/aa7f01

Google Scholar

[20] Zorigt Gombosuren, Khenmedekh Lochin, Altangoo Ochirbat, Aldarmaa Chuluunbaatar, Direct determination of the fully differential cross section by the time-dependent wave function, arXiv:2311.18490v1 (2023)

Google Scholar