[1]
H.D. Roth, The Beginnings of Organic Photochemistry, Angew. Chem. Int. Ed. Engl. 28 (1989) 1193–1207.
DOI: 10.1002/anie.198911931
Google Scholar
[2]
V. Ramamurthy, K. Venkatesan, Photochemical reactions of organic crystals, Chem. Rev. 87 (1987) 433–481.
DOI: 10.1021/cr00078a009
Google Scholar
[3]
L.R. MacGillivray, J.L. Reid, J.A. Ripmeester, Supramolecular Control of Reactivity in the Solid State Using Linear Molecular Templates, J. Am. Chem. Soc. 122 (2000) 7817–7818.
DOI: 10.1021/ja001239i
Google Scholar
[4]
G.M.J. Schmidt, Schmidt 385. Topochemistry. Part III. The crystal chemistry of some trans-cinnamic acids, J. Chem. Soc. (1964) 2014.
DOI: 10.1039/jr9640002014
Google Scholar
[5]
G.M.J. Schmidt, Photodimerization in the solid state, Pure and Applied Chemistry 27 (1971) 647–678.
DOI: 10.1351/pac197127040647
Google Scholar
[6]
R. Medishetty, I.-H. Park, S.S. Lee, J.J. Vittal, Solid-state polymerisation via [2+2] cycloaddition reaction involving coordination polymers, Chem. Commun. 52 (2016) 3989–4001.
DOI: 10.1039/C5CC08374E
Google Scholar
[7]
M. Pattabiraman, L.S. Kaanumalle, A. Natarajan, V. Ramamurthy, Regioselective Photodimerization of Cinnamic Acids in Water: Templation with Cucurbiturils, Langmuir 22 (2006) 7605–7609.
DOI: 10.1021/la061215a
Google Scholar
[8]
V. Enkelmann, G. Wegner, K. Novak, K.B. Wagener, Single-crystal-to-single-crystal photodimerization of cinnamic acid, J. Am. Chem. Soc. 115 (1993) 10390–10391.
DOI: 10.1021/ja00075a077
Google Scholar
[9]
M. Khan, G. Brunklaus, V. Enkelmann, H.-W. Spiess, Transient States in [2 + 2] Photodimerization of Cinnamic Acid: Correlation of Solid-State NMR and X-ray Analysis, J. Am. Chem. Soc. 130 (2008) 1741–1748.
DOI: 10.1021/ja0773711
Google Scholar
[10]
A. Hilgeroth, G. Hempel, U. Baumeister, D. Reichert, Solid-state photodimerization of 4-aryl-1,4-dihydropyridines studied by CPMAS NMR spectroscopy, Solid State Nuclear Magnetic Resonance 13 (1999) 231–243.
DOI: 10.1016/S0926-2040(98)00090-3
Google Scholar
[11]
R. Medishetty, S.C. Sahoo, C.E. Mulijanto, P. Naumov, J.J. Vittal, Photosalient Behavior of Photoreactive Crystals, Chem. Mater. 27 (2015) 1821–1829.
DOI: 10.1021/acs.chemmater.5b00021
Google Scholar
[12]
M. Zahan, H. Sun, S.E. Hayes, H. Krautscheid, J. Haase, M. Bertmer, Influence of Alkali Metal Cations on the Photodimerization of Bromo Cinnamates Studied by Solid-State NMR, J. Phys. Chem. C 124 (2020) 27614–27620.
DOI: 10.1021/acs.jpcc.0c09826
Google Scholar
[13]
J. Davaasambuu, G. Busse, S. Techert, Aspects of the Photodimerization Mechanism of 2,4-Dichlorocinnamic Acid Studied by Kinetic Photocrystallography, J. Phys. Chem. A 110 (2006) 3261–3265.
DOI: 10.1021/jp054723m
Google Scholar
[14]
G. Kaupp, Photodimerization of Cinnamic Acid in the Solid State: New Insights on Application of Atomic Force Microscopy, Angew. Chem. Int. Ed. Engl. 31 (1992) 592–595.
DOI: 10.1002/anie.199205921
Google Scholar
[15]
B. Ulambayar, K. Batchuluun, C. Bariashir, N. Uranbileg, F.J. Stammler, J. Davaasambuu, T.E. Schrader, Using potassium bromide pellets and optical spectroscopy to assess the photodimerization of two trans -(trifluoromethyl)-cinnamic acid compounds, CrystEngComm 26 (2024) 4470–4477.
DOI: 10.1039/D4CE00205A
Google Scholar
[16]
W. Kohn, L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140 (1965) A1133–A1138.
DOI: 10.1103/PhysRev.140.A1133
Google Scholar
[17]
P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. 136 (1964) B864–B871.
DOI: 10.1103/PhysRev.136.B864
Google Scholar
[18]
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 3865–3868.
DOI: 10.1103/PhysRevLett.77.3865
Google Scholar
[19]
M. Dion, H. Rydberg, E. Schröder, D.C. Langreth, B.I. Lundqvist, Van der Waals Density Functional for General Geometries, Phys. Rev. Lett. 92 (2004) 246401.
DOI: 10.1103/PhysRevLett.92.246401
Google Scholar
[20]
K. Lee, É.D. Murray, L. Kong, B.I. Lundqvist, D.C. Langreth, Higher-accuracy van der Waals density functional, Phys. Rev. B 82 (2010) 081101.
DOI: 10.1103/PhysRevB.82.081101
Google Scholar
[21]
H. Rydberg, M. Dion, N. Jacobson, E. Schröder, P. Hyldgaard, S.I. Simak, D.C. Langreth, B.I. Lundqvist, Van der Waals Density Functional for Layered Structures, Phys. Rev. Lett. 91 (2003) 126402.
DOI: 10.1103/PhysRevLett.91.126402
Google Scholar
[22]
X.-J. Zhang, Van der Waals Forces, in: Q.J. Wang, Y.-W. Chung (Eds.), Encyclopedia of Tribology, Springer US, Boston, MA, 2013: p.3945–3947.
DOI: 10.1007/978-0-387-92897-5_457
Google Scholar
[23]
P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso, S. De Gironcoli, P. Delugas, R.A. DiStasio, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H.-Y. Ko, A. Kokalj, E. Küçükbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N.L. Nguyen, H.-V. Nguyen, A. Otero-de-la-Roza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A.P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu, S. Baroni, Advanced capabilities for materials modelling with Quantum ESPRESSO, J. Phys.: Condens. Matter 29 (2017) 465901.
DOI: 10.1088/1361-648X/aa8f79
Google Scholar
[24]
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. De Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter 21 (2009) 395502.
DOI: 10.1088/0953-8984/21/39/395502
Google Scholar
[25]
Quantum Chemical Calculations, Molecular Docking and ADMET Studies of Trans-4-(trifluoromethyl)cinnamic acid, IJC 63 (2024).
DOI: 10.56042/ijc.v63i1.785
Google Scholar
[26]
J. Garai, Universal Equation of States are Derived from the Isothermal Relationships of Elastic Solids, (2008).
Google Scholar
[27]
D.R. Hamann, M. Schlüter, C. Chiang, Norm-Conserving Pseudopotentials, Phys. Rev. Lett. 43 (1979) 1494–1497.
DOI: 10.1103/PhysRevLett.43.1494
Google Scholar
[28]
A.F. Andrea Benassi, Carlo Cavazzoni, PWSCF's epsilon.x user's manual, https://web.mit.edu/espresso_v6.1/amd64_ubuntu1404/qe-6.1/PP/Doc/eps_man.pdf.
Google Scholar
[29]
J.A.K. Howard, H.A. Sparkes, Trans-4-(trifluoromethyl) cinnamic acid: Structural characterisation and crystallographic investigation into the temperature induced phase transition, CrystEngComm 10 (2008) 502.
DOI: 10.1039/b715349j
Google Scholar
[30]
E. Zojer, Z. Shuai, G. Leising and J.L. Bredas, From molecular states to band structure: Theoretical investigation of momentum dependent exciatations in phenylene based organic materials, 111 (1999) 1668.
DOI: 10.1063/1.479426
Google Scholar