First-Principles Study of Structural, Electronic and Optical Properties of Trans-4-(Trifluoromethyl) Cinnamic Acid

Article Preview

Abstract:

The crystal structure, electronic and optical properties of organic molecular crystal Trans-4-(trifluoromethyl) cinnamic acid (4-TFMCA, C10H7F3O2) were studied using the density functional theory (DFT). Since 4-TFMCA undergoes solid-state photodimerization under an external light source (UV), the optical properties were a subject of interest. In the calculations, experimental lattice parameters were obtained from previous studies and used as an initial geometry. Structural optimization was achieved using the vdW-DF2 functional with norm-conserving pseudopotentials (NCPP). To optimize the crystal structure, the Birch-Murnaghan equation of state (EOS) was used, and the total volume showed a decrease of 2%. The electronic band structure of the 4-TFMCA crystal was first calculated. The electronic and optical band gaps were predicted, and an artificial acceptor level, attributed to the unsaturated carbon and hydrogen atoms in the molecule, was observed. Additionally, optical properties such as the dielectric function, reflectivity, loss function, refractive index, and absorption coefficient were computed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

27-38

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.D. Roth, The Beginnings of Organic Photochemistry, Angew. Chem. Int. Ed. Engl. 28 (1989) 1193–1207.

DOI: 10.1002/anie.198911931

Google Scholar

[2] V. Ramamurthy, K. Venkatesan, Photochemical reactions of organic crystals, Chem. Rev. 87 (1987) 433–481.

DOI: 10.1021/cr00078a009

Google Scholar

[3] L.R. MacGillivray, J.L. Reid, J.A. Ripmeester, Supramolecular Control of Reactivity in the Solid State Using Linear Molecular Templates, J. Am. Chem. Soc. 122 (2000) 7817–7818.

DOI: 10.1021/ja001239i

Google Scholar

[4] G.M.J. Schmidt, Schmidt 385. Topochemistry. Part III. The crystal chemistry of some trans-cinnamic acids, J. Chem. Soc. (1964) 2014.

DOI: 10.1039/jr9640002014

Google Scholar

[5] G.M.J. Schmidt, Photodimerization in the solid state, Pure and Applied Chemistry 27 (1971) 647–678.

DOI: 10.1351/pac197127040647

Google Scholar

[6] R. Medishetty, I.-H. Park, S.S. Lee, J.J. Vittal, Solid-state polymerisation via [2+2] cycloaddition reaction involving coordination polymers, Chem. Commun. 52 (2016) 3989–4001.

DOI: 10.1039/C5CC08374E

Google Scholar

[7] M. Pattabiraman, L.S. Kaanumalle, A. Natarajan, V. Ramamurthy, Regioselective Photodimerization of Cinnamic Acids in Water: Templation with Cucurbiturils, Langmuir 22 (2006) 7605–7609.

DOI: 10.1021/la061215a

Google Scholar

[8] V. Enkelmann, G. Wegner, K. Novak, K.B. Wagener, Single-crystal-to-single-crystal photodimerization of cinnamic acid, J. Am. Chem. Soc. 115 (1993) 10390–10391.

DOI: 10.1021/ja00075a077

Google Scholar

[9] M. Khan, G. Brunklaus, V. Enkelmann, H.-W. Spiess, Transient States in [2 + 2] Photodimerization of Cinnamic Acid: Correlation of Solid-State NMR and X-ray Analysis, J. Am. Chem. Soc. 130 (2008) 1741–1748.

DOI: 10.1021/ja0773711

Google Scholar

[10] A. Hilgeroth, G. Hempel, U. Baumeister, D. Reichert, Solid-state photodimerization of 4-aryl-1,4-dihydropyridines studied by CPMAS NMR spectroscopy, Solid State Nuclear Magnetic Resonance 13 (1999) 231–243.

DOI: 10.1016/S0926-2040(98)00090-3

Google Scholar

[11] R. Medishetty, S.C. Sahoo, C.E. Mulijanto, P. Naumov, J.J. Vittal, Photosalient Behavior of Photoreactive Crystals, Chem. Mater. 27 (2015) 1821–1829.

DOI: 10.1021/acs.chemmater.5b00021

Google Scholar

[12] M. Zahan, H. Sun, S.E. Hayes, H. Krautscheid, J. Haase, M. Bertmer, Influence of Alkali Metal Cations on the Photodimerization of Bromo Cinnamates Studied by Solid-State NMR, J. Phys. Chem. C 124 (2020) 27614–27620.

DOI: 10.1021/acs.jpcc.0c09826

Google Scholar

[13] J. Davaasambuu, G. Busse, S. Techert, Aspects of the Photodimerization Mechanism of 2,4-Dichlorocinnamic Acid Studied by Kinetic Photocrystallography, J. Phys. Chem. A 110 (2006) 3261–3265.

DOI: 10.1021/jp054723m

Google Scholar

[14] G. Kaupp, Photodimerization of Cinnamic Acid in the Solid State: New Insights on Application of Atomic Force Microscopy, Angew. Chem. Int. Ed. Engl. 31 (1992) 592–595.

DOI: 10.1002/anie.199205921

Google Scholar

[15] B. Ulambayar, K. Batchuluun, C. Bariashir, N. Uranbileg, F.J. Stammler, J. Davaasambuu, T.E. Schrader, Using potassium bromide pellets and optical spectroscopy to assess the photodimerization of two trans -(trifluoromethyl)-cinnamic acid compounds, CrystEngComm 26 (2024) 4470–4477.

DOI: 10.1039/D4CE00205A

Google Scholar

[16] W. Kohn, L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140 (1965) A1133–A1138.

DOI: 10.1103/PhysRev.140.A1133

Google Scholar

[17] P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. 136 (1964) B864–B871.

DOI: 10.1103/PhysRev.136.B864

Google Scholar

[18] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 3865–3868.

DOI: 10.1103/PhysRevLett.77.3865

Google Scholar

[19] M. Dion, H. Rydberg, E. Schröder, D.C. Langreth, B.I. Lundqvist, Van der Waals Density Functional for General Geometries, Phys. Rev. Lett. 92 (2004) 246401.

DOI: 10.1103/PhysRevLett.92.246401

Google Scholar

[20] K. Lee, É.D. Murray, L. Kong, B.I. Lundqvist, D.C. Langreth, Higher-accuracy van der Waals density functional, Phys. Rev. B 82 (2010) 081101.

DOI: 10.1103/PhysRevB.82.081101

Google Scholar

[21] H. Rydberg, M. Dion, N. Jacobson, E. Schröder, P. Hyldgaard, S.I. Simak, D.C. Langreth, B.I. Lundqvist, Van der Waals Density Functional for Layered Structures, Phys. Rev. Lett. 91 (2003) 126402.

DOI: 10.1103/PhysRevLett.91.126402

Google Scholar

[22] X.-J. Zhang, Van der Waals Forces, in: Q.J. Wang, Y.-W. Chung (Eds.), Encyclopedia of Tribology, Springer US, Boston, MA, 2013: p.3945–3947.

DOI: 10.1007/978-0-387-92897-5_457

Google Scholar

[23] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso, S. De Gironcoli, P. Delugas, R.A. DiStasio, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H.-Y. Ko, A. Kokalj, E. Küçükbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N.L. Nguyen, H.-V. Nguyen, A. Otero-de-la-Roza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A.P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu, S. Baroni, Advanced capabilities for materials modelling with Quantum ESPRESSO, J. Phys.: Condens. Matter 29 (2017) 465901.

DOI: 10.1088/1361-648X/aa8f79

Google Scholar

[24] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. De Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter 21 (2009) 395502.

DOI: 10.1088/0953-8984/21/39/395502

Google Scholar

[25] Quantum Chemical Calculations, Molecular Docking and ADMET Studies of Trans-4-(trifluoromethyl)cinnamic acid, IJC 63 (2024).

DOI: 10.56042/ijc.v63i1.785

Google Scholar

[26] J. Garai, Universal Equation of States are Derived from the Isothermal Relationships of Elastic Solids, (2008).

Google Scholar

[27] D.R. Hamann, M. Schlüter, C. Chiang, Norm-Conserving Pseudopotentials, Phys. Rev. Lett. 43 (1979) 1494–1497.

DOI: 10.1103/PhysRevLett.43.1494

Google Scholar

[28] A.F. Andrea Benassi, Carlo Cavazzoni, PWSCF's epsilon.x user's manual, https://web.mit.edu/espresso_v6.1/amd64_ubuntu1404/qe-6.1/PP/Doc/eps_man.pdf.

Google Scholar

[29] J.A.K. Howard, H.A. Sparkes, Trans-4-(trifluoromethyl) cinnamic acid: Structural characterisation and crystallographic investigation into the temperature induced phase transition, CrystEngComm 10 (2008) 502.

DOI: 10.1039/b715349j

Google Scholar

[30] E. Zojer, Z. Shuai, G. Leising and J.L. Bredas, From molecular states to band structure: Theoretical investigation of momentum dependent exciatations in phenylene based organic materials, 111 (1999) 1668.

DOI: 10.1063/1.479426

Google Scholar