[1]
S. Esposito and A. Naddeo, Majorana solutions to the two-electron problem, Found. Phys. 42 (2012), 1586–1608.
DOI: 10.1007/s10701-012-9685-1
Google Scholar
[2]
D. J. Griffiths, Introduction to Quantum Mechanics, second ed., Pearson Prentice Hall, Upper Saddle River, New Jersey, 2005.
Google Scholar
[3]
S. Koonin and D. Meredith, Computational Physics, Perseus Books, Reading, Massachusetts, 1998).
Google Scholar
[4]
A. S. Dickinson and P. R. Certain, Calculation of Matrix Elements for One‐Dimensional Quantum‐Mechanical Problems, J. Chem. Phys. 49 (1968), 4209.
DOI: 10.1063/1.1670738
Google Scholar
[5]
J. V. Lill, G. A. Parker, and J. C. Light, Discrete variable representations and sudden models in quantum scattering theory, Chem. Phys. Lett. 89 (1982), 483.
DOI: 10.1016/0009-2614(82)83051-0
Google Scholar
[6]
J. Light, I. Hamilton, and J. Lill, Generalized discrete variable approximation in quantum mechanics, J. Chem. Phys. 82 (1985) 1400.
DOI: 10.1063/1.448462
Google Scholar
[7]
Z. Bačić and J. Light, Highly excited vibrational levels of "floppy" triatomic molecules: A discrete variable representation—Distributed Gaussian basis approach, J. Chem. Phys. 85 (1986), 4594.
DOI: 10.1063/1.451824
Google Scholar
[8]
Z. Bačić and J. Light, Accurate localized and delocalized vibrational states of HCN/HNC, J. Chem. Phys. 86 (1987), 3065.
DOI: 10.1063/1.452017
Google Scholar
[9]
R. M. Whitnell and J. Light, Efficient pointwise representations for vibrational wave functions: Eigenfunctions of H+3, J. Chem. Phys. 90 (1989), 1774.
DOI: 10.1063/1.456071
Google Scholar
[10]
S. E. Choi and J. Light, Determination of the bound and quasibound states of ar–hcl van der Waals complex: discrete variable representation method, J. Chem. Phys. 92 (1990), 2129.
DOI: 10.1063/1.458004
Google Scholar
[11]
D. O. Harris, G. G. Engerholm, and W. D. Gwinn, Calculation of Matrix Elements for One‐Dimensional Quantum‐Mechanical Problems and the Application to Anharmonic Oscillators, J. Chem. Phys. 43 (1965), 1515.
DOI: 10.1063/1.1696963
Google Scholar
[12]
L.-Y. Peng and A. F. Starace, Application of Coulomb wave function discrete variable representation to atomic systems in strong laser fields, J. Chem. Phys. 125, (2006), 154311.
DOI: 10.1063/1.2358351
Google Scholar
[13]
K. M. Dunseath, J. M. Launay, M. T. Dunseath and L. Mouret, Schwartz interpolation for problems involving the Coulomb potential, J. Phys. B 35 (2002), 3539.
DOI: 10.1088/0953-4075/35/16/313
Google Scholar
[14]
C. Schwartz, High‐accuracy approximation techniques for analytic functions, J. Math. Phys. 26 (1985), 411.
Google Scholar
[15]
A. K. Roy and S. I Chu, Density-functional calculations on singly and doubly excited Rydberg states of many-electron atoms, Phys. Rev. A 65 (2002), 052508.
DOI: 10.1103/physreva.65.052508
Google Scholar
[16]
Ts. Tsednee and D. L. Yeager, A numerical Hartree self-consistent field calculation of an autoionization resonance parameters for a doubly excited 2s2, 3s2, and 4s2 states of He atom with a complex absorbing potential, Chin. Phys. B 26 (2017), 083101.
DOI: 10.1088/1674-1056/26/8/083101
Google Scholar
[17]
Darío M. Mitnik, Helium atom in a box: Doubly excited levels within the 𝑆-wave model, Phys. Rev. A 70, 022703.
Google Scholar