[1]
Kosteev, D. A., Bogatov, N. A., Ermoshkin, A. V., Kapustin, I. A., Molkov, A. A., Razumov, D. D., & Salin, M. B. Application of low-frequency acoustic signals for the study of underwater gas flares // Acoustical Physics. 2024. V.70 (4). P.551–565.
DOI: 10.31857/s0320791924040091
Google Scholar
[2]
Weidner E., Weber T. C., Mayer L., Jakobssn M., Chernykh D., Semiletov I. A wideband acoustic method for direct assessment of bubble-mediated methane flux // Continental Shelf Research. 2019. V.173. P.104.
DOI: 10.1016/j.csr.2018.12.005
Google Scholar
[3]
Greinert J., Nutzel B. Hydroacoustic experiments to establish a method for the determination of ethane bubble fluxes at cold seeps // Geo-Marine Letters. 2004. V.24 (2). P.75−84.
DOI: 10.1007/s00367-003-0165-7
Google Scholar
[4]
V.E. Nakoryakov, B.G. Pokusaev, I.R. Shreiber, Wave dynamics of gas and vapor-liquid media. M.: Energoatomizdat, 1990. 248 p.
Google Scholar
[5]
Liu Y., Wang B., & Wen S. Numerical simulation of acoustic properties of bubbly liquid considering viscosity effects // Physics of Fluids. 2017. V.29. P.102101.
Google Scholar
[6]
Gubaidullin D.A., Fedorov Y. V. Sound waves in a liquid with polydisperse vapor-gas bubbles // Acoustical Physics. 2016. V.62 (2). P.178-186.
DOI: 10.1134/s1063771016020068
Google Scholar
[7]
Kazakov, L. I. On a sound-absorbing coating in the form of a viscous liquid layer with bubbles. // Acoustical Physics. 2024. V.70 (1). P. 40–48.
DOI: 10.1134/s1063771024601407
Google Scholar
[8]
Gimaltdinova, I. K., Stolpovsky, M. V., & Kochanova, E. Yu. Acoustic diagnostics of underwater emissions propagating as a multiphase jet. // Acoustical Physics. 2024. V.70 (2). P.174–179.
DOI: 10.31857/s0320791924020047
Google Scholar
[9]
Leighton T.G. The acoustic bubble. San-Diego: Academic, 1994. 613 p.
Google Scholar
[10]
Alekseev V.N., Rybak S.A. Propagation of stationary sound waves in bubble media. // Acoustical Physics. 1995. V.41 (5). P.690-698.
Google Scholar
[11]
Sychyov A.I. The effect of initial pressure in polydisperse bubbly media on detonation wave characteristics // Journal of Technical Physics. 2017. Vol. 87 (4). P. 504-507.
Google Scholar
[12]
Gimaltdinov, I. K., & Kochanova, E. Y. Conditions for pressure wave focusing in a bubble wedge. // Acoustical Physics. 2020. V.66 (4). P. 351–356.
DOI: 10.1134/s1063771020040028
Google Scholar
[13]
Minakov A.V., Pryazhnikov M.I., Damdinov B.B., Nemtsev I.V. Study of bulk viscosity of nanosuspensions using acoustic spectroscopy. // Acoustical Physics. 2022. V.68 (2). P.182-189.
DOI: 10.1134/s1063771022020051
Google Scholar
[14]
Karabutov A.A., Rudenko O.V., Sapozhnikov O.A. Theory of thermal self-focusing taking into account the formation of shock waves and acoustic flows. // Acoustical Physics. 1988. V.34 (4). P.644-650.
Google Scholar
[15]
Zhang, H., et al. Experimental study of the acoustic properties of bubbly liquid at various bubble concentrations. // JASA. 2016. V.140. P.2734-2743.
Google Scholar