[1]
J. Burunkova, G. Alkhalil, A. Veniaminov, I. Csarnovics, S. Molnar, S. Kokenyesi, Arsenic trisulfide-doped silica-based porous glass. Optics and Laser Technology. 147 (2022) 1–7.
DOI: 10.1016/j.optlastec.2021.107658
Google Scholar
[2]
M. Brown, R. M'Saoubi, P. Crawforth, A. Mantle, J. McGourlay, H. Ghadbeigi, On deformation characterisation of machined surfaces and machining-induced white layers in a milled titanium alloy. Journal of Materials Processing Tech.. 299 (2022) 1–15.
DOI: 10.1016/j.jmatprotec.2021.117378
Google Scholar
[3]
V. Pasternak, A. Ruban, O. Zemlianskyi, G. Ivanov, Using various methods of imaging and visualization for studying heterogeneous structures at micro- and nanoscales. Materials Science Forum. 1126 (2024) 131–141
DOI: 10.4028/p-85YY1q
Google Scholar
[4]
Sh. Balachandran, A. Tripathi, Ar. Banerjee, M. Chinara, R. Teja, S. Suresha, D. Choudhuri, R. Banerjee, D. Banerjee, Transformations, recrystallization, microtexture and plasticity in titanium alloys. Web of Conferences. 321 (2020) 1–13.
DOI: 10.1051/matecconf/202032111020
Google Scholar
[5]
V. Pasternak, A. Ruban, O. Holii, S. Vavreniuk, Mathematical model of the dynamics of spherical elements. Advances in Science and Technology. 156 (2024) 117–125
DOI: 10.4028/p-vqM060
Google Scholar
[6]
P. Hirschberger, Th. Trang Võ, Urs. Peuker, H. Kruggel-Emden, A Texture Inheritance Model for Spherical Particles in Particle Replacement Method (PRM) Schemes for Breakage in Discrete Element Method (DEM) Simulations. Minerals Engineering. 205 (2024) 1–19.
DOI: 10.1016/j.mineng.2023.108491
Google Scholar
[7]
T. Ueda, Reproducibility of the Repose Angle, Porosity, and Coordination Number of Particles Generated by Spherical Harmonic-Based Principal Component Analysis Using Discrete Element Simulation. Powder Technology. 415 (2023) 1–22.
DOI: 10.1016/j.powtec.2022.118143
Google Scholar
[8]
V. Pasternak, A. Ruban, Y. Horbachenko, S. Vavreniuk, Computer modelling of the process of separation of heterogeneous elements (spheres). Advances in Science and Technology. 156 (2024) 127–136
DOI: 10.4028/p-5aAMEf
Google Scholar
[9]
R. Hesse, F. Krull, S. Antonyuk, Prediction of Random Packing Density and Flowability for Non-Spherical Particles by Deep Convolutional Neural Networks and Discrete Element Method simulations. Powder Technology 393 (2021) 559–581.
DOI: 10.1016/j.powtec.2021.07.056
Google Scholar
[10]
H.M. Lee, T.H. Kim, G.H. Yoon, Analysis of Cone-Shaped Projectile Behavior During Penetration into Granular Particles Using the Discrete Element Method. Computational Particle Mechanics 11 (2024) 689–703.
DOI: 10.1007/s40571-023-00647-1
Google Scholar
[11]
V. Pasternak, A. Ruban, O. Bilotil, D. Karpova, Effective application of numerical approaches and Green functions for the process of modelling spheres. Advances in Science and Technology 156 (2024) 3–13
DOI: 10.4028/p-5KGuD9
Google Scholar
[12]
L. Zhou, M.A. Elemam, R.K. Agarwal, W. Shi, Modeling of Aerodynamic Systems. Discrete Element Method for Multiphase Flows with Biogenic Particles 1 (2024) 19–63.
DOI: 10.1007/978-3-031-67729-8_3
Google Scholar
[13]
Mah. Aftabi, K. Ahangari, Al. Naghi Dehghan, Investigating the Effect of Layering and Schistosity on the Mechanical Behavior of Rocks Using the Discrete Element Method. Rudarsko-Geološko-Naftni Zbornik 1 (2023) 41–48.
DOI: 10.17794/rgn.2023.5.4
Google Scholar
[14]
V. Pasternak, A. Ruban, O. Chernenko, O. Nadon, Use of the boundary element method for solving problems of predicting the regularities of formation of the structure of non-isometric components. Advances in Science and Technology 156 (2024) 15–25
DOI: 10.4028/p-Xm5pzL
Google Scholar
[15]
H. Zhao, Z. Zheng, R. Tan, W. Liu, Z. Zhang, Modeling Shearing and Bending Behavior of Kiwifruit Branches Using the Discrete Element Method. Applied Sciences 14 (2024) 1–14.
DOI: 10.3390/app142310920
Google Scholar
[16]
Y. Huang, W. Sun, Q. Xie, H. You, K. Wu, Discrete Element Simulation of the Shear Behavior of Binary Mixtures Composed of Spherical and Cubic Particles. Applied Sciences 13 (2023) 1–19.
DOI: 10.3390/app13169163
Google Scholar
[17]
V. Pasternak, A. Ruban, K. Pasynchuk, P. Polyanskyi, Special features of using mathematical modeling for the study of tetrahedral elements. Advances in Science and Technology. 156 (2024) 27–37
DOI: 10.4028/p-DBbwY3
Google Scholar
[18]
H. Wang, J. Li, G. Hu, B. Zhou, Yu. Guo, Effect of Binder Coatings on the Fracture Behavior of Polymer-Crystal Composite Particles Using the Discrete Element Method. Coatings. 11 (2021) 1–15.
DOI: 10.3390/coatings11091075
Google Scholar
[19]
Zah. Ghasemi Monfared, J. Gunnar I. Hellstrom, Ken. Umeki, The Impact of Discrete Element Method Parameters on Realistic Representation of Spherical Particles in a Packed Bed. Processes. 12 (2024) 1–17.
DOI: 10.3390/pr12010183
Google Scholar
[20]
V. Pasternak, O. Zabolotnyi, D. Cagáňová, Y. Hulchuk, Investigation of cylindrical particles sphericity and roundness based on the extreme vertices model. Lecture Notes in Mechanical Engineering. (2024) 62–73
DOI: 10.1007/978-3-031-63720-9_6
Google Scholar
[21]
T. Zhang, D. Chen, H. Yang, W. Zhao, Yu. Wang, H. Zhou, Spreading Behavior of Non-Spherical Particles with Reconstructed Shapes Using Discrete Element Method in Additive Manufacturing. Polymers. 16 (2024) 1–12.
DOI: 10.3390/polym16091179
Google Scholar
[22]
C. Chukwu, E. Bonyah, M. Juga, L. Fatmawati, On Mathematical Modeling of Fractional-Order Stochastic for Tuberculosis Transmission Dynamics. Results in Control and Optimization. 11 (2023) 1–17.
DOI: 10.1016/j.rico.2023.100238
Google Scholar
[23]
V. Pasternak, O. Zabolotnyi, N. Zubovetska, D. Cagáňová, I. Pavlenko, Manufacturing of the T-207 prismatic part using additive manufacturing technologies. Lecture Notes in Mechanical Engineering. (2023) 119–128
DOI: 10.1007/978-3-031-16651-8_12
Google Scholar
[24]
J. Burunkova, G. Alkhalil, A. Veniaminov, I. Csarnovics, S. Molnar, S. Kokenyesi, Arsenic Trisulfide-Doped Silica-Based Porous Glass. Optics and Laser Technology. 147 (2022) 1–7.
DOI: 10.1016/j.optlastec.2021.107658
Google Scholar
[25]
V. Pasternak, H. Sulym, I.M. Pasternak, Frequency domain Green's function and boundary integral equations for multifield materials and quasicrystals. International Journal of Solids and Structures. 286-287 (2024) 112562
DOI: 10.1016/j.ijsolstr.2023.112562
Google Scholar
[26]
Zh. Chenyang, L. Yanbo, M. Yiming, Wu. Songgu, G. Junbo, Optimization of Green Spherical Agglomeration Process Based on Response Surface Methodology for Preparation of High-Performance Spherical Particles. International Journal of Pharmaceutics. 662 (2022) 1–17.
DOI: 10.1016/j.ijpharm.2024.124515
Google Scholar
[27]
Zhang, L. Guangfu, Mathematical Modeling for Ceramic Shape 3D Image Based on Deep Learning Algorithm. Advances in Mathematical Physics. 1 (2021) 1–10.
DOI: 10.1155/2021/4343255
Google Scholar
[28]
Al. Al-Masri, K. Khanafer, K. Vafai, Multiscale Homogenization of Aluminum Honeycomb Structures: Thermal Analysis with Orthotropic Representative Volume Element and Finite Element Method. Heliyon. 10 (2024) 1–19.
DOI: 10.1016/j.heliyon.2024.e24166
Google Scholar
[29]
I. Ryshchenko, L. Lyashok, A. Vasilchenko, A. Ruban, L. Skatkov, Electrochemical synthesis of crystalline niobium oxide. Materials Science Forum. 1038 (2021) 51–60. https://www.scientific.net/MSF.1038.51
DOI: 10.4028/www.scientific.net/msf.1038.51
Google Scholar
[30]
Al. Povitsky, Modeling of Sedimentation of Particles near Corrugated Surfaces by the Meshless Method of Fundamental Solutions. Mathematical and Computational Applications. 29 (2024) 1–19.
DOI: 10.3390/mca29050090
Google Scholar
[31]
D. Xunbai, S. Dang, Y. Yuzheng, Ch. Yingbin, The Finite Element Method with High-Order Enrichment Functions for Elastodynamic Analysis. Mathematics. 10 (2022) 1–27.
DOI: 10.3390/math10234595
Google Scholar
[32]
A. Vasilchenko, О. Danilin, Т. Lutsenko, А. Ruban, Features of evaluation of fire resistance of reinforced concrete ribbed slab under combined effect explosion-fire. Materials Science Forum. 1038 (2021) 492–499
DOI: 10.4028/www.scientific.net/msf.1038.492
Google Scholar
[33]
Hai. Sun, Hend. Elzefzafy, Study on Transmission Characteristics in Three Kinds of Deformed Finlines Based on Edge-Based Finite Element Method. Applied Mathematics and Nonlinear Sciences. 8 (2023) 35–44.
DOI: 10.2478/amns.2022.1.00021
Google Scholar
[34]
M. Zouaou, J. Gardan, P. Lafon, A. Makke, C. Labergere, N. Recho, A Finite Element Method to Predict the Mechanical Behavior of a Pre-Structured Material Manufactured by Fused Filament Fabrication in 3D Printing. Applied Sciences. 11 (2021) 2–19.
DOI: 10.3390/app11115075
Google Scholar
[35]
O. Kaglyak, B. Romanov, K. Romanova, A. Ruban, V. Shvedun, Repeatability of sheet material formation results and interchangeability of processing modes at multi-pass laser formation. Materials Science Forum. 1038 (2021) 15–24.
DOI: 10.4028/www.scientific.net/msf.1038.15
Google Scholar
[36]
L. Musabekova, K. Arystanbayev, M. Jamankarayeva, M. Amandikov, Computer Simulation of Attractive Swarming Accompanied by Particles Aggregation in Dispersed Systems. Chemical Engineering Transactions. 94 (2022) 1021–1026.
Google Scholar
[37]
M. Schroter, Ch. Lyv, Ji. Huang, K. Huang, Challenges of «Imaging» Particulate Materials in Three Dimensions. Papers in Physics. 14 (2022) 1–18.
DOI: 10.4279/pip.140015
Google Scholar
[38]
Kovalov, A., Purdenko, R., Otrosh, Y., Tоmеnkо V., Rashkevich, N., Shcholokov, E., Pidhornyy, M., Zolotova, N., Suprun, O. Assessment of fire resistance of fireproof reinforced concrete structures. Eastern-European Journal of Enterprise Technologies. 5(1 (119) (2022) 53–61.
DOI: 10.15587/1729-4061.2022.266219
Google Scholar
[39]
V. Pasternak, L. Samchuk, A. Ruban, O. Chernenko, N. Morkovska, Investigation of the main stages in modeling spherical particles of inhomogeneous materials. Materials Science Forum. 1068 (2022) 207–214
DOI: 10.4028/p-9jq543
Google Scholar
[40]
D. Huaiping, W. Qiao, Hu. Wei, Y. Xiaochun, Spatial Rigid-Flexible-Liquid Coupling Dynamics of Towed System Analyzed by a Hamiltonian Finite Element Method. Journal of Marine Science and Engineering. 9 (2021) 1–18.
DOI: 10.3390/jmse9111157
Google Scholar
[41]
Al. Wannas Akeel, H. Auday Shaker, N. H. Hamza, Elastic – Plastic Analysis of the Plane Strain Under Combined Thermal and Pressure Loads with a New Technique in the Finite Element Method. Open Engineering. 12 (2022) 477–484.
DOI: 10.1515/eng-2022-0049
Google Scholar
[42]
V. Pasternak, A. Ruban, V. Shvedun, J. Veretennikova, Development of a 3d computer simulation model using C++ methods. Defect and Diffusion Forum. 428 (2023) 57–66.
DOI: 10.4028/p-5iwtnl
Google Scholar
[43]
D. Kobylkin, O. Zachko, V. Popovych, N. Burak, R. Golovatyi, C. Wolff, Models for changes management in infrastructure projects. CEUR Workshop Proceedings, 2565 (2020) 106–115.
Google Scholar
[44]
L. Lipus, В. Acko, B., R. Klobucar, Enhancing Calibration Accuracy with Laser Interferometry for High-Resolution Measuring Systems. Advances in Production Engineering and Management. 19 (2024) 386–394.
DOI: 10.14743/apem2024.3.514
Google Scholar
[45]
V. Pasternak, A. Ruban, V. Hurkalenko, A. Zhyhlo, Computer simulation modeling of an inhomogeneous medium with ellipse-shaped irregular elements. Defect and Diffusion Forum. 428 (2023) 37–45.
DOI: 10.4028/p-lp6pjp
Google Scholar
[46]
О. Skorodumova, O. Tarakhno, O. Chebotaryova, D .Saveliev, F. Emen, Investigation of gas formation processes in cotton fabrics impregnated with binary compositions of ethyl silicate-flame retardant system. Materials Science Forum. 1038 (2021) 460–467.
DOI: 10.4028/www.scientific.net/msf.1038.460
Google Scholar