Testing Micro- and Nanoparticles in a Dynamic Environment

Article Preview

Abstract:

The paper presents a study of the behavior of particles of different sizes in a medium, focusing on their settling rate, hardness and elastic modulus. The settling rate was calculated using Stokes’ law, which shows a quadratic dependence on the particle radius. The results demonstrate that particles with a diameter of 100 μm settle significantly faster compared to smaller particles (1 μm and 10 μm), while the latter remain suspended for a long time due to the significant influence of viscosity. Mechanical properties of particles, such as hardness and elastic modulus, exhibit size dependence: hardness decreases with decreasing particle size, making smaller particles more vulnerable to mechanical stress. The elastic modulus shows a weak decrease for small particles, which may affect their resistance to deformation during collisions. The results obtained are important for the practical use of particles in various technological processes, such as liquid purification, development of nanomaterials, transport of solid particles in liquid or gas flows. The study emphasizes the need to consider the relationships between the physical, mechanical and dynamic characteristics of particles for optimizing technological processes and developing new materials.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] J. Burunkova, G. Alkhalil, A. Veniaminov, I. Csarnovics, S. Molnar, S. Kokenyesi, Arsenic trisulfide-doped silica-based porous glass. Optics and Laser Technology. 147 (2022) 1–7.

DOI: 10.1016/j.optlastec.2021.107658

Google Scholar

[2] M. Brown, R. M'Saoubi, P. Crawforth, A. Mantle, J. McGourlay, H. Ghadbeigi, On deformation characterisation of machined surfaces and machining-induced white layers in a milled titanium alloy. Journal of Materials Processing Tech.. 299 (2022) 1–15.

DOI: 10.1016/j.jmatprotec.2021.117378

Google Scholar

[3] V. Pasternak, A. Ruban, O. Zemlianskyi, G. Ivanov, Using various methods of imaging and visualization for studying heterogeneous structures at micro- and nanoscales. Materials Science Forum. 1126 (2024) 131–141

DOI: 10.4028/p-85YY1q

Google Scholar

[4] Sh. Balachandran, A. Tripathi, Ar. Banerjee, M. Chinara, R. Teja, S. Suresha, D. Choudhuri, R. Banerjee, D. Banerjee, Transformations, recrystallization, microtexture and plasticity in titanium alloys. Web of Conferences. 321 (2020) 1–13.

DOI: 10.1051/matecconf/202032111020

Google Scholar

[5] V. Pasternak, A. Ruban, O. Holii, S. Vavreniuk, Mathematical model of the dynamics of spherical elements. Advances in Science and Technology. 156 (2024) 117–125

DOI: 10.4028/p-vqM060

Google Scholar

[6] P. Hirschberger, Th. Trang Võ, Urs. Peuker, H. Kruggel-Emden, A Texture Inheritance Model for Spherical Particles in Particle Replacement Method (PRM) Schemes for Breakage in Discrete Element Method (DEM) Simulations. Minerals Engineering. 205 (2024) 1–19.

DOI: 10.1016/j.mineng.2023.108491

Google Scholar

[7] T. Ueda, Reproducibility of the Repose Angle, Porosity, and Coordination Number of Particles Generated by Spherical Harmonic-Based Principal Component Analysis Using Discrete Element Simulation. Powder Technology. 415 (2023) 1–22.

DOI: 10.1016/j.powtec.2022.118143

Google Scholar

[8] V. Pasternak, A. Ruban, Y. Horbachenko, S. Vavreniuk, Computer modelling of the process of separation of heterogeneous elements (spheres). Advances in Science and Technology. 156 (2024) 127–136

DOI: 10.4028/p-5aAMEf

Google Scholar

[9] R. Hesse, F. Krull, S. Antonyuk, Prediction of Random Packing Density and Flowability for Non-Spherical Particles by Deep Convolutional Neural Networks and Discrete Element Method simulations. Powder Technology 393 (2021) 559–581.

DOI: 10.1016/j.powtec.2021.07.056

Google Scholar

[10] H.M. Lee, T.H. Kim, G.H. Yoon, Analysis of Cone-Shaped Projectile Behavior During Penetration into Granular Particles Using the Discrete Element Method. Computational Particle Mechanics 11 (2024) 689–703.

DOI: 10.1007/s40571-023-00647-1

Google Scholar

[11] V. Pasternak, A. Ruban, O. Bilotil, D. Karpova, Effective application of numerical approaches and Green functions for the process of modelling spheres. Advances in Science and Technology 156 (2024) 3–13

DOI: 10.4028/p-5KGuD9

Google Scholar

[12] L. Zhou, M.A. Elemam, R.K. Agarwal, W. Shi, Modeling of Aerodynamic Systems. Discrete Element Method for Multiphase Flows with Biogenic Particles 1 (2024) 19–63.

DOI: 10.1007/978-3-031-67729-8_3

Google Scholar

[13] Mah. Aftabi, K. Ahangari, Al. Naghi Dehghan, Investigating the Effect of Layering and Schistosity on the Mechanical Behavior of Rocks Using the Discrete Element Method. Rudarsko-Geološko-Naftni Zbornik 1 (2023) 41–48.

DOI: 10.17794/rgn.2023.5.4

Google Scholar

[14] V. Pasternak, A. Ruban, O. Chernenko, O. Nadon, Use of the boundary element method for solving problems of predicting the regularities of formation of the structure of non-isometric components. Advances in Science and Technology 156 (2024) 15–25

DOI: 10.4028/p-Xm5pzL

Google Scholar

[15] H. Zhao, Z. Zheng, R. Tan, W. Liu, Z. Zhang, Modeling Shearing and Bending Behavior of Kiwifruit Branches Using the Discrete Element Method. Applied Sciences 14 (2024) 1–14.

DOI: 10.3390/app142310920

Google Scholar

[16] Y. Huang, W. Sun, Q. Xie, H. You, K. Wu, Discrete Element Simulation of the Shear Behavior of Binary Mixtures Composed of Spherical and Cubic Particles. Applied Sciences 13 (2023) 1–19.

DOI: 10.3390/app13169163

Google Scholar

[17] V. Pasternak, A. Ruban, K. Pasynchuk, P. Polyanskyi, Special features of using mathematical modeling for the study of tetrahedral elements. Advances in Science and Technology. 156 (2024) 27–37

DOI: 10.4028/p-DBbwY3

Google Scholar

[18] H. Wang, J. Li, G. Hu, B. Zhou, Yu. Guo, Effect of Binder Coatings on the Fracture Behavior of Polymer-Crystal Composite Particles Using the Discrete Element Method. Coatings. 11 (2021) 1–15.

DOI: 10.3390/coatings11091075

Google Scholar

[19] Zah. Ghasemi Monfared, J. Gunnar I. Hellstrom, Ken. Umeki, The Impact of Discrete Element Method Parameters on Realistic Representation of Spherical Particles in a Packed Bed. Processes. 12 (2024) 1–17.

DOI: 10.3390/pr12010183

Google Scholar

[20] V. Pasternak, O. Zabolotnyi, D. Cagáňová, Y. Hulchuk, Investigation of cylindrical particles sphericity and roundness based on the extreme vertices model. Lecture Notes in Mechanical Engineering. (2024) 62–73

DOI: 10.1007/978-3-031-63720-9_6

Google Scholar

[21] T. Zhang, D. Chen, H. Yang, W. Zhao, Yu. Wang, H. Zhou, Spreading Behavior of Non-Spherical Particles with Reconstructed Shapes Using Discrete Element Method in Additive Manufacturing. Polymers. 16 (2024) 1–12.

DOI: 10.3390/polym16091179

Google Scholar

[22] C. Chukwu, E. Bonyah, M. Juga, L. Fatmawati, On Mathematical Modeling of Fractional-Order Stochastic for Tuberculosis Transmission Dynamics. Results in Control and Optimization. 11 (2023) 1–17.

DOI: 10.1016/j.rico.2023.100238

Google Scholar

[23] V. Pasternak, O. Zabolotnyi, N. Zubovetska, D. Cagáňová, I. Pavlenko, Manufacturing of the T-207 prismatic part using additive manufacturing technologies. Lecture Notes in Mechanical Engineering. (2023) 119–128

DOI: 10.1007/978-3-031-16651-8_12

Google Scholar

[24] J. Burunkova, G. Alkhalil, A. Veniaminov, I. Csarnovics, S. Molnar, S. Kokenyesi, Arsenic Trisulfide-Doped Silica-Based Porous Glass. Optics and Laser Technology. 147 (2022) 1–7.

DOI: 10.1016/j.optlastec.2021.107658

Google Scholar

[25] V. Pasternak, H. Sulym, I.M. Pasternak, Frequency domain Green's function and boundary integral equations for multifield materials and quasicrystals. International Journal of Solids and Structures. 286-287 (2024) 112562

DOI: 10.1016/j.ijsolstr.2023.112562

Google Scholar

[26] Zh. Chenyang, L. Yanbo, M. Yiming, Wu. Songgu, G. Junbo, Optimization of Green Spherical Agglomeration Process Based on Response Surface Methodology for Preparation of High-Performance Spherical Particles. International Journal of Pharmaceutics. 662 (2022) 1–17.

DOI: 10.1016/j.ijpharm.2024.124515

Google Scholar

[27] Zhang, L. Guangfu, Mathematical Modeling for Ceramic Shape 3D Image Based on Deep Learning Algorithm. Advances in Mathematical Physics. 1 (2021) 1–10.

DOI: 10.1155/2021/4343255

Google Scholar

[28] Al. Al-Masri, K. Khanafer, K. Vafai, Multiscale Homogenization of Aluminum Honeycomb Structures: Thermal Analysis with Orthotropic Representative Volume Element and Finite Element Method. Heliyon. 10 (2024) 1–19.

DOI: 10.1016/j.heliyon.2024.e24166

Google Scholar

[29] I. Ryshchenko, L. Lyashok, A. Vasilchenko, A. Ruban, L. Skatkov, Electrochemical synthesis of crystalline niobium oxide. Materials Science Forum. 1038 (2021) 51–60. https://www.scientific.net/MSF.1038.51

DOI: 10.4028/www.scientific.net/msf.1038.51

Google Scholar

[30] Al. Povitsky, Modeling of Sedimentation of Particles near Corrugated Surfaces by the Meshless Method of Fundamental Solutions. Mathematical and Computational Applications. 29 (2024) 1–19.

DOI: 10.3390/mca29050090

Google Scholar

[31] D. Xunbai, S. Dang, Y. Yuzheng, Ch. Yingbin, The Finite Element Method with High-Order Enrichment Functions for Elastodynamic Analysis. Mathematics. 10 (2022) 1–27.

DOI: 10.3390/math10234595

Google Scholar

[32] A. Vasilchenko, О. Danilin, Т. Lutsenko, А. Ruban, Features of evaluation of fire resistance of reinforced concrete ribbed slab under combined effect explosion-fire. Materials Science Forum. 1038 (2021) 492–499

DOI: 10.4028/www.scientific.net/msf.1038.492

Google Scholar

[33] Hai. Sun, Hend. Elzefzafy, Study on Transmission Characteristics in Three Kinds of Deformed Finlines Based on Edge-Based Finite Element Method. Applied Mathematics and Nonlinear Sciences. 8 (2023) 35–44.

DOI: 10.2478/amns.2022.1.00021

Google Scholar

[34] M. Zouaou, J. Gardan, P. Lafon, A. Makke, C. Labergere, N. Recho, A Finite Element Method to Predict the Mechanical Behavior of a Pre-Structured Material Manufactured by Fused Filament Fabrication in 3D Printing. Applied Sciences. 11 (2021) 2–19.

DOI: 10.3390/app11115075

Google Scholar

[35] O. Kaglyak, B. Romanov, K. Romanova, A. Ruban, V. Shvedun, Repeatability of sheet material formation results and interchangeability of processing modes at multi-pass laser formation. Materials Science Forum. 1038 (2021) 15–24.

DOI: 10.4028/www.scientific.net/msf.1038.15

Google Scholar

[36] L. Musabekova, K. Arystanbayev, M. Jamankarayeva, M. Amandikov, Computer Simulation of Attractive Swarming Accompanied by Particles Aggregation in Dispersed Systems. Chemical Engineering Transactions. 94 (2022) 1021–1026.

Google Scholar

[37] M. Schroter, Ch. Lyv, Ji. Huang, K. Huang, Challenges of «Imaging» Particulate Materials in Three Dimensions. Papers in Physics. 14 (2022) 1–18.

DOI: 10.4279/pip.140015

Google Scholar

[38] Kovalov, A., Purdenko, R., Otrosh, Y., Tоmеnkо V., Rashkevich, N., Shcholokov, E., Pidhornyy, M., Zolotova, N., Suprun, O. Assessment of fire resistance of fireproof reinforced concrete structures. Eastern-European Journal of Enterprise Technologies. 5(1 (119) (2022) 53–61.

DOI: 10.15587/1729-4061.2022.266219

Google Scholar

[39] V. Pasternak, L. Samchuk, A. Ruban, O. Chernenko, N. Morkovska, Investigation of the main stages in modeling spherical particles of inhomogeneous materials. Materials Science Forum. 1068 (2022) 207–214

DOI: 10.4028/p-9jq543

Google Scholar

[40] D. Huaiping, W. Qiao, Hu. Wei, Y. Xiaochun, Spatial Rigid-Flexible-Liquid Coupling Dynamics of Towed System Analyzed by a Hamiltonian Finite Element Method. Journal of Marine Science and Engineering. 9 (2021) 1–18.

DOI: 10.3390/jmse9111157

Google Scholar

[41] Al. Wannas Akeel, H. Auday Shaker, N. H. Hamza, Elastic – Plastic Analysis of the Plane Strain Under Combined Thermal and Pressure Loads with a New Technique in the Finite Element Method. Open Engineering. 12 (2022) 477–484.

DOI: 10.1515/eng-2022-0049

Google Scholar

[42] V. Pasternak, A. Ruban, V. Shvedun, J. Veretennikova, Development of a 3d computer simulation model using C++ methods. Defect and Diffusion Forum. 428 (2023) 57–66.

DOI: 10.4028/p-5iwtnl

Google Scholar

[43] D. Kobylkin, O. Zachko, V. Popovych, N. Burak, R. Golovatyi, C. Wolff, Models for changes management in infrastructure projects. CEUR Workshop Proceedings, 2565 (2020) 106–115.

Google Scholar

[44] L. Lipus, В. Acko, B., R. Klobucar, Enhancing Calibration Accuracy with Laser Interferometry for High-Resolution Measuring Systems. Advances in Production Engineering and Management. 19 (2024) 386–394.

DOI: 10.14743/apem2024.3.514

Google Scholar

[45] V. Pasternak, A. Ruban, V. Hurkalenko, A. Zhyhlo, Computer simulation modeling of an inhomogeneous medium with ellipse-shaped irregular elements. Defect and Diffusion Forum. 428 (2023) 37–45.

DOI: 10.4028/p-lp6pjp

Google Scholar

[46] О. Skorodumova, O. Tarakhno, O. Chebotaryova, D .Saveliev, F. Emen, Investigation of gas formation processes in cotton fabrics impregnated with binary compositions of ethyl silicate-flame retardant system. Materials Science Forum. 1038 (2021) 460–467.

DOI: 10.4028/www.scientific.net/msf.1038.460

Google Scholar