Development of a Computer-Simulation Model for Particle Filling Based on Molecular Dynamics

Article Preview

Abstract:

This scientific work presents the development of a computer-simulation model for particle filling in three-dimensional space based on molecular dynamics methods. The Lennard-Jones potential was used to simulate interactions between particles, and the equations of motion were integrated using the Velocity Verlet algorithm. The model incorporates periodic boundary conditions (PBC), ensuring accurate representation of an infinite system without boundary effects. The simulation results confirm the system's energy stability: the total energy remains virtually unchanged throughout the simulation, indicating the correctness of numerical integration. Fluctuations in kinetic and potential energies demonstrate normal system dynamics, where energy is redistributed among particles through interactions. An analysis of the spatial distribution of particles revealed that the system remains in a liquid state, with no signs of solid structure formation or particle aggregation. Notably, the developed model enables the simulation of complex physical processes such as dense structure formation, particle transport, and self-packing. The obtained results highlight the efficiency of the molecular dynamics method for analyzing granular and particulate media, as well as for studying the physical properties of multi-particle systems. The model can be utilized to optimize technological processes related to material transportation, packaging, and storage, as well as for research into nanomaterials and composites.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

93-103

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Pasternak, A. Ruban, O. Zemlianskyi, G. Ivanov, Using various methods of imaging and visualization for studying heterogeneous structures at micro- and nanoscales. Materials Science Forum. 1126 (2024) 131–141

DOI: 10.4028/p-85YY1q

Google Scholar

[2] O. Skorodumova, O. Tarakhno, A. Babayev, A. Chernukha, S. Shvydka, Study of Phosphorus-Containing Silica Coatings Based on Liquid Glass for Fire Protection of Textile Materials. In Key Engineering Materials. 954 (2023) 167–175. Trans Tech Publications, Ltd

DOI: 10.4028/p-hgyq9v

Google Scholar

[3] A. Sharshanov, O. Tarakhno, A. Babayev, O. Skorodumova, Mathematical Modeling of the Protective Effect of Ethyl Silicate Gel Coating on Textile Materials under Conditions of Constant or Dynamic Thermal Exposure. In Key Engineering Materials. 927 (2022) 77–86. Trans Tech Publications, Ltd

DOI: 10.4028/p-8t33rc

Google Scholar

[4] V. Pasternak, A. Ruban, O. Holii, S. Vavreniuk, Mathematical model of the dynamics of spherical elements. Advances in Science and Technology. 156 (2024) 117–125

DOI: 10.4028/p-vqM060

Google Scholar

[5] J. Burunkova, G. Alkhalil, A. Veniaminov, I. Csarnovics, S. Molnar, S. Kokenyesi, Arsenic trisulfide-doped silica-based porous glass. Optics and Laser Technology. 147 (2022) 1–7.

DOI: 10.1016/j.optlastec.2021.107658

Google Scholar

[6] V. Pasternak, A. Ruban, Y. Horbachenko, S. Vavreniuk, Computer modelling of the process of separation of heterogeneous elements (spheres). Advances in Science and Technology. 156 (2024) 127–136

DOI: 10.4028/p-5aAMEf

Google Scholar

[7] J. Burunkova, G. Alkhalil, A. Veniaminov, I. Csarnovics, S. Molnar, S. Kokenyesi, Arsenic trisulfide-doped silica-based porous glass. Optics and Laser Technology. 147 (2022) 1–7.

DOI: 10.1016/j.optlastec.2021.107658

Google Scholar

[8] Zh. Chenyang, L. Yanbo, M. Yiming, Wu. Songgu, G. Junbo, Optimization of green spherical agglomeration process based on response surface methodology for preparation of high-performance spherical particles. International Journal of Pharmaceutics. 662 (2022) 1–17.

DOI: 10.1016/j.ijpharm.2024.124515

Google Scholar

[9] V. Pasternak, A. Ruban, O. Bilotil, D. Karpova, Effective application of numerical approaches and Green functions for the process of modelling spheres. Advances in Science and Technology. 156 (2024) 3–13

DOI: 10.4028/p-5KGuD9

Google Scholar

[10] Li. Ke, Gu. Dali, Gu. Zixi, Zh. Yunxiang, Computer 3D Simulation of Proppant Particles. Applied Sciences. 1 (2024) 1–15.

Google Scholar

[11] L. Musabekova, K. Arystanbayev, M. Jamankarayeva, M. Amandikov, Computer Simulation of Attractive Swarming Accompanied by Particles Aggregation in Dispersed Systems. Chemical Engineering Transactions. 94 (2022) 1021–1026.

Google Scholar

[12] V. Pasternak, A. Ruban, O. Chernenko, O. Nadon, Use of the boundary element method for solving problems of predicting the regularities of formation of the structure of non-isometric components. Advances in Science and Technology. 156 (2024) 15–25

DOI: 10.4028/p-Xm5pzL

Google Scholar

[13] Al. Povitsky, Modeling of Sedimentation of Particles near Corrugated Surfaces by the Meshless Method of Fundamental Solutions. Mathematical and Computational Applications. 29 (2024) 1–19.

DOI: 10.3390/mca29050090

Google Scholar

[14] V. Pasternak, A. Ruban, K. Pasynchuk, P. Polyanskyi, Special features of using mathematical modeling for the study of tetrahedral elements. Advances in Science and Technology. 156 (2024) 27–37

DOI: 10.4028/p-DBbwY3

Google Scholar

[15] Kovalov, A., Purdenko, R., Otrosh, Y., Tоmеnkо V., Rashkevich, N., Shcholokov, E., Pidhornyy, M., Zolotova, N., Suprun, O. Assessment of fire resistance of fireproof reinforced concrete structures. Eastern-European Journal of Enterprise Technologies. 5(1 (119) (2022) 53–61.

DOI: 10.15587/1729-4061.2022.266219

Google Scholar

[16] M. Schroter, Ch. Lyv, Ji. Huang, K. Huang, Challenges of «Imaging» Particulate Materials in Three Dimensions, Papers in Physics 14 (2022) 1-18.

DOI: 10.4279/pip.140015

Google Scholar

[17] M. Brown, R. M'Saoubi, P. Crawforth, A. Mantle, J. McGourlay, H. Ghadbeigi, On deformation characterisation of machined surfaces and machining-induced white layers in a milled titanium alloy. Journal of Materials Processing Tech. 299 (2022) 1–15.

DOI: 10.1016/j.jmatprotec.2021.117378

Google Scholar

[18] V. Pasternak, O. Zabolotnyi, D. Cagáňová, Y. Hulchuk, Investigation of cylindrical particles sphericity and roundness based on the extreme vertices model. Lecture Notes in Mechanical Engineering. (2024) 62–73

DOI: 10.1007/978-3-031-63720-9_6

Google Scholar

[19] M. Shawki, M. Eltarahony, M. Maisa, The Impact of Titanium Oxide Nanoparticles and Low Direct Electric Current on biofilm Dispersal of Bacillus Cereus and Pseudomonas Aeruginosa: a Comparative Study. Papers in Physics. 13 (2021) 1–14.

DOI: 10.4279/pip.130005

Google Scholar

[20] L. Lipus, В. Acko, B., R. Klobucar, Enhancing Calibration Accuracy with Laser Interferometry for High-Resolution Measuring Systems. Advances in Production Engineering and Management. 19 (2024) 386–394.

DOI: 10.14743/apem2024.3.514

Google Scholar

[21] D. Xunbai, S. Dang, Y. Yuzheng, Ch. Yingbin, The Finite Element Method with High-order Enrichment Functions for Elastodynamic Analysis. Mathematics. 10 (2022) 1–27.

DOI: 10.3390/math10234595

Google Scholar

[22] V. Pasternak, O. Zabolotnyi, N. Zubovetska, D. Cagáňová, I. Pavlenko, Manufacturing of the T-207 prismatic part using additive manufacturing technologies. Lecture Notes in Mechanical Engineering. (2023) 119–128

DOI: 10.1007/978-3-031-16651-8_12

Google Scholar

[23] L. Zhang, L. Guangfu, Mathematical Modeling for Ceramic Shape 3D Image Based on Deep Learning Algorithm. Advances in Mathematical Physics. 1 (2021) 1–10.

DOI: 10.1155/2021/4343255

Google Scholar

[24] D. Huaiping, W. Qiao, Hu. Wei, Y. Xiaochun, Spatial Rigid-Flexible-Liquid Coupling Dynamics of Towed System Analyzed by a Hamiltonian Finite Element Method. Journal of Marine Science and Engineering. 9 (2021) 1–18.

DOI: 10.3390/jmse9111157

Google Scholar

[25] I. Ryshchenko, L. Lyashok, A. Vasilchenko, A. Ruban, L. Skatkov, Electrochemical synthesis of crystalline niobium oxide. Materials Science Forum. 1038 (2021) 51–60. https://www.scientific.net/MSF.1038.51

DOI: 10.4028/www.scientific.net/msf.1038.51

Google Scholar

[26] H. Sun, H. Elzefzafy, Study on Transmission Characteristics in Three Kinds of Deformed Finlines Based on Edge-Based Finite Element Method. Applied Mathematics and Nonlinear Sciences. 8 (2023) 35–44.

DOI: 10.2478/amns.2022.1.00021

Google Scholar

[27] B. Prydalnyi, H. Sulym, Identification of Analytical Dependencies of the Operational Characteristics of the Workpiece Clamping Mechanisms with the Rotary Movement of the Input Link. Acta Mechanica et Automatica. 15 (2021) 47–52. https://sciendo.com/article/

DOI: 10.2478/ama-2021-0007

Google Scholar

[28] V. Pasternak, A. Ruban, V. Shvedun, J. Veretennikova, Development of a 3d computer simulation model using C++ methods. Defect and Diffusion Forum. 428 (2023) 57–66.

DOI: 10.4028/p-5iwtnl

Google Scholar

[29] C. Chukwu, E. Bonyah, M. Juga, L. Fatmawati, On Mathematical Modeling of Fractional-Order Stochastic for Tuberculosis Transmission Dynamics. Results in Control and Optimization. 11 (2023) 1–17.

DOI: 10.1016/j.rico.2023.100238

Google Scholar

[30] S. Dharmavaram, X. Wan, L. Perotti, A Lagrangian Thin-Shell Finite Element Method for Interacting Particles on Fluid Membranes. Membranes. 12 (2022) 1–20.

DOI: 10.3390/membranes12100960

Google Scholar

[31] F. Quesada Pereira, An. Huescar de la Cruz, C. Gómez Molina, Al. Álvarez Melcón, V. Esbert, Integral Equation Analysis of Multiport H‐plane Microwave Circuits by Using 2D Rectangular Cavity Green's Functions Accelerated by the Ewald Method, IET Microwaves. Antennas and Propagation. 17 (2023) 13–25.

DOI: 10.1049/mia2.12308

Google Scholar

[32] Ch. Liang, Yan. Yin, Wen. Wang, A Thermodynamically Consistent Non-Isothermal Phase-Field Model for Selective Laser Sintering. International Journal of Mechanical Sciences. 166 (2023) 1–15.

DOI: 10.1016/j.ijmecsci.2023.108602

Google Scholar

[33] O. Kaglyak, B. Romanov, K. Romanova, A. Ruban, V. Shvedun, Repeatability of sheet material formation results and interchangeability of processing modes at multi-pass laser formation. Materials Science Forum. 1038 (2021) 15–24.

DOI: 10.4028/www.scientific.net/msf.1038.15

Google Scholar

[34] S. Dharmavaram, X. Wan, L. E. Perotti, A Lagrangian Thin-Shell Finite Element Method for Interacting Particles on Fluid Membranes. Membranes. 12 (2022) 1–20.

DOI: 10.3390/membranes12100960

Google Scholar

[35] G. Okeke, Ak. Udo, R. Alqahtani, M. Kaplan, Ah. W. Eltayeb, A Novel Iterative Scheme for Solving Delay Differential Equations and Third Order Boundary Value Problems Via Green's Functions. AIMS Mathematics. 9 (2024) 6468–6498.

DOI: 10.3934/math.2024315

Google Scholar

[36] A. Ruban, V. Pasternak, N. Huliieva, Prediction of the structural properties of powder materials by 3D modeling methods. Materials Science Forum. 1068 (2022) 231-238.

DOI: 10.4028/p-18k386

Google Scholar

[37] M. Zouaou, J. Gardan, P. Lafon, A. Makke, C. Labergere, N. Recho, A Finite Element Method to Predict the Mechanical Behavior of a Pre-Structured Material Manufactured by Fused Filament Fabrication in 3D Printing. Applied Sciences. 11 (2021) 2-19.

DOI: 10.3390/app11115075

Google Scholar

[38] A. Vasilchenko, О. Danilin, Т. Lutsenko, А. Ruban, Features of evaluation of fire resistance of reinforced concrete ribbed slab under combined effect explosion-fire. Materials Science Forum. 1038 (2021) 492–499.

DOI: 10.4028/www.scientific.net/msf.1038.492

Google Scholar

[39] D. Barreto, J. Leak, A Guide to Modeling the Geotechnical Behavior of Soils Using the Discrete Element Method. Modeling in Geotechnical Engineering. 1 (2021) 79–100.

DOI: 10.1016/b978-0-12-821205-9.00016-2

Google Scholar

[40] D. Lobovikov, Еl. Matygullina, L. Sirotenko, Simulation by Discrete Element Method Using Complex Particles. SSRN. 1 (2024) 1–12.

DOI: 10.2139/ssrn.4819120

Google Scholar

[41] V. Pasternak, H. Sulym, I.M. Pasternak, Frequency domain Green's function and boundary integral equations for multifield materials and quasicrystals. International Journal of Solids and Structures. 286–287 (2024) 112562

DOI: 10.1016/j.ijsolstr.2023.112562

Google Scholar

[42] B. Jadidi, M. Ebrahimi, F. Ein-Mozaffari, Al. Lohi, Analyzing Mixing Behavior in a Double Paddle Blender Containing Two Types of Non-Spherical Particles Through Discrete Element Method (DEM) and Response Surface Method (RSM). Powder Technology. 427 (2023) 1–20.

DOI: 10.1016/j.powtec.2023.118761

Google Scholar

[43] P. Hirschberger, Th. Trang Võ, Urs. Peuker, H. Kruggel-Emden, A Texture Inheritance Model for Spherical Particles in Particle Replacement Method (PRM) Schemes for Breakage in Discrete Element Method (DEM) Simulations. Minerals Engineering. 205 (2024) 1–19.

DOI: 10.1016/j.mineng.2023.108491

Google Scholar

[44] V. Pasternak, A. Ruban, M. Surianinov, S. Shapoval, Simulation modeling of an inhomogeneous medium, in particular: round, triangular, square shapes. Defect and Diffusion Forum. 428 (2023) 27–35.

DOI: 10.4028/p-sx9ljy

Google Scholar

[45] Ah. Junaid, Ar. Muhammad, M. Zhenhua, Numerical Solutions of Troesch's Problem Based on a Faster Iterative Scheme with an Application. AIMS Mathematics. 9 (2024) 9164–9183.

DOI: 10.3934/math.2024446

Google Scholar

[46] D. Kobylkin, O. Zachko, V. Popovych, N. Burak, R. Golovatyi, C. Wolff, Models for changes management in infrastructure projects. CEUR Workshop Proceedings, 2565 (2020) 106–115.

Google Scholar