[1]
V. Pasternak, A. Ruban, O. Zemlianskyi, G. Ivanov, Using various methods of imaging and visualization for studying heterogeneous structures at micro- and nanoscales. Materials Science Forum. 1126 (2024) 131–141
DOI: 10.4028/p-85YY1q
Google Scholar
[2]
O. Skorodumova, O. Tarakhno, A. Babayev, A. Chernukha, S. Shvydka, Study of Phosphorus-Containing Silica Coatings Based on Liquid Glass for Fire Protection of Textile Materials. In Key Engineering Materials. 954 (2023) 167–175. Trans Tech Publications, Ltd
DOI: 10.4028/p-hgyq9v
Google Scholar
[3]
A. Sharshanov, O. Tarakhno, A. Babayev, O. Skorodumova, Mathematical Modeling of the Protective Effect of Ethyl Silicate Gel Coating on Textile Materials under Conditions of Constant or Dynamic Thermal Exposure. In Key Engineering Materials. 927 (2022) 77–86. Trans Tech Publications, Ltd
DOI: 10.4028/p-8t33rc
Google Scholar
[4]
V. Pasternak, A. Ruban, O. Holii, S. Vavreniuk, Mathematical model of the dynamics of spherical elements. Advances in Science and Technology. 156 (2024) 117–125
DOI: 10.4028/p-vqM060
Google Scholar
[5]
J. Burunkova, G. Alkhalil, A. Veniaminov, I. Csarnovics, S. Molnar, S. Kokenyesi, Arsenic trisulfide-doped silica-based porous glass. Optics and Laser Technology. 147 (2022) 1–7.
DOI: 10.1016/j.optlastec.2021.107658
Google Scholar
[6]
V. Pasternak, A. Ruban, Y. Horbachenko, S. Vavreniuk, Computer modelling of the process of separation of heterogeneous elements (spheres). Advances in Science and Technology. 156 (2024) 127–136
DOI: 10.4028/p-5aAMEf
Google Scholar
[7]
J. Burunkova, G. Alkhalil, A. Veniaminov, I. Csarnovics, S. Molnar, S. Kokenyesi, Arsenic trisulfide-doped silica-based porous glass. Optics and Laser Technology. 147 (2022) 1–7.
DOI: 10.1016/j.optlastec.2021.107658
Google Scholar
[8]
Zh. Chenyang, L. Yanbo, M. Yiming, Wu. Songgu, G. Junbo, Optimization of green spherical agglomeration process based on response surface methodology for preparation of high-performance spherical particles. International Journal of Pharmaceutics. 662 (2022) 1–17.
DOI: 10.1016/j.ijpharm.2024.124515
Google Scholar
[9]
V. Pasternak, A. Ruban, O. Bilotil, D. Karpova, Effective application of numerical approaches and Green functions for the process of modelling spheres. Advances in Science and Technology. 156 (2024) 3–13
DOI: 10.4028/p-5KGuD9
Google Scholar
[10]
Li. Ke, Gu. Dali, Gu. Zixi, Zh. Yunxiang, Computer 3D Simulation of Proppant Particles. Applied Sciences. 1 (2024) 1–15.
Google Scholar
[11]
L. Musabekova, K. Arystanbayev, M. Jamankarayeva, M. Amandikov, Computer Simulation of Attractive Swarming Accompanied by Particles Aggregation in Dispersed Systems. Chemical Engineering Transactions. 94 (2022) 1021–1026.
Google Scholar
[12]
V. Pasternak, A. Ruban, O. Chernenko, O. Nadon, Use of the boundary element method for solving problems of predicting the regularities of formation of the structure of non-isometric components. Advances in Science and Technology. 156 (2024) 15–25
DOI: 10.4028/p-Xm5pzL
Google Scholar
[13]
Al. Povitsky, Modeling of Sedimentation of Particles near Corrugated Surfaces by the Meshless Method of Fundamental Solutions. Mathematical and Computational Applications. 29 (2024) 1–19.
DOI: 10.3390/mca29050090
Google Scholar
[14]
V. Pasternak, A. Ruban, K. Pasynchuk, P. Polyanskyi, Special features of using mathematical modeling for the study of tetrahedral elements. Advances in Science and Technology. 156 (2024) 27–37
DOI: 10.4028/p-DBbwY3
Google Scholar
[15]
Kovalov, A., Purdenko, R., Otrosh, Y., Tоmеnkо V., Rashkevich, N., Shcholokov, E., Pidhornyy, M., Zolotova, N., Suprun, O. Assessment of fire resistance of fireproof reinforced concrete structures. Eastern-European Journal of Enterprise Technologies. 5(1 (119) (2022) 53–61.
DOI: 10.15587/1729-4061.2022.266219
Google Scholar
[16]
M. Schroter, Ch. Lyv, Ji. Huang, K. Huang, Challenges of «Imaging» Particulate Materials in Three Dimensions, Papers in Physics 14 (2022) 1-18.
DOI: 10.4279/pip.140015
Google Scholar
[17]
M. Brown, R. M'Saoubi, P. Crawforth, A. Mantle, J. McGourlay, H. Ghadbeigi, On deformation characterisation of machined surfaces and machining-induced white layers in a milled titanium alloy. Journal of Materials Processing Tech. 299 (2022) 1–15.
DOI: 10.1016/j.jmatprotec.2021.117378
Google Scholar
[18]
V. Pasternak, O. Zabolotnyi, D. Cagáňová, Y. Hulchuk, Investigation of cylindrical particles sphericity and roundness based on the extreme vertices model. Lecture Notes in Mechanical Engineering. (2024) 62–73
DOI: 10.1007/978-3-031-63720-9_6
Google Scholar
[19]
M. Shawki, M. Eltarahony, M. Maisa, The Impact of Titanium Oxide Nanoparticles and Low Direct Electric Current on biofilm Dispersal of Bacillus Cereus and Pseudomonas Aeruginosa: a Comparative Study. Papers in Physics. 13 (2021) 1–14.
DOI: 10.4279/pip.130005
Google Scholar
[20]
L. Lipus, В. Acko, B., R. Klobucar, Enhancing Calibration Accuracy with Laser Interferometry for High-Resolution Measuring Systems. Advances in Production Engineering and Management. 19 (2024) 386–394.
DOI: 10.14743/apem2024.3.514
Google Scholar
[21]
D. Xunbai, S. Dang, Y. Yuzheng, Ch. Yingbin, The Finite Element Method with High-order Enrichment Functions for Elastodynamic Analysis. Mathematics. 10 (2022) 1–27.
DOI: 10.3390/math10234595
Google Scholar
[22]
V. Pasternak, O. Zabolotnyi, N. Zubovetska, D. Cagáňová, I. Pavlenko, Manufacturing of the T-207 prismatic part using additive manufacturing technologies. Lecture Notes in Mechanical Engineering. (2023) 119–128
DOI: 10.1007/978-3-031-16651-8_12
Google Scholar
[23]
L. Zhang, L. Guangfu, Mathematical Modeling for Ceramic Shape 3D Image Based on Deep Learning Algorithm. Advances in Mathematical Physics. 1 (2021) 1–10.
DOI: 10.1155/2021/4343255
Google Scholar
[24]
D. Huaiping, W. Qiao, Hu. Wei, Y. Xiaochun, Spatial Rigid-Flexible-Liquid Coupling Dynamics of Towed System Analyzed by a Hamiltonian Finite Element Method. Journal of Marine Science and Engineering. 9 (2021) 1–18.
DOI: 10.3390/jmse9111157
Google Scholar
[25]
I. Ryshchenko, L. Lyashok, A. Vasilchenko, A. Ruban, L. Skatkov, Electrochemical synthesis of crystalline niobium oxide. Materials Science Forum. 1038 (2021) 51–60. https://www.scientific.net/MSF.1038.51
DOI: 10.4028/www.scientific.net/msf.1038.51
Google Scholar
[26]
H. Sun, H. Elzefzafy, Study on Transmission Characteristics in Three Kinds of Deformed Finlines Based on Edge-Based Finite Element Method. Applied Mathematics and Nonlinear Sciences. 8 (2023) 35–44.
DOI: 10.2478/amns.2022.1.00021
Google Scholar
[27]
B. Prydalnyi, H. Sulym, Identification of Analytical Dependencies of the Operational Characteristics of the Workpiece Clamping Mechanisms with the Rotary Movement of the Input Link. Acta Mechanica et Automatica. 15 (2021) 47–52. https://sciendo.com/article/
DOI: 10.2478/ama-2021-0007
Google Scholar
[28]
V. Pasternak, A. Ruban, V. Shvedun, J. Veretennikova, Development of a 3d computer simulation model using C++ methods. Defect and Diffusion Forum. 428 (2023) 57–66.
DOI: 10.4028/p-5iwtnl
Google Scholar
[29]
C. Chukwu, E. Bonyah, M. Juga, L. Fatmawati, On Mathematical Modeling of Fractional-Order Stochastic for Tuberculosis Transmission Dynamics. Results in Control and Optimization. 11 (2023) 1–17.
DOI: 10.1016/j.rico.2023.100238
Google Scholar
[30]
S. Dharmavaram, X. Wan, L. Perotti, A Lagrangian Thin-Shell Finite Element Method for Interacting Particles on Fluid Membranes. Membranes. 12 (2022) 1–20.
DOI: 10.3390/membranes12100960
Google Scholar
[31]
F. Quesada Pereira, An. Huescar de la Cruz, C. Gómez Molina, Al. Álvarez Melcón, V. Esbert, Integral Equation Analysis of Multiport H‐plane Microwave Circuits by Using 2D Rectangular Cavity Green's Functions Accelerated by the Ewald Method, IET Microwaves. Antennas and Propagation. 17 (2023) 13–25.
DOI: 10.1049/mia2.12308
Google Scholar
[32]
Ch. Liang, Yan. Yin, Wen. Wang, A Thermodynamically Consistent Non-Isothermal Phase-Field Model for Selective Laser Sintering. International Journal of Mechanical Sciences. 166 (2023) 1–15.
DOI: 10.1016/j.ijmecsci.2023.108602
Google Scholar
[33]
O. Kaglyak, B. Romanov, K. Romanova, A. Ruban, V. Shvedun, Repeatability of sheet material formation results and interchangeability of processing modes at multi-pass laser formation. Materials Science Forum. 1038 (2021) 15–24.
DOI: 10.4028/www.scientific.net/msf.1038.15
Google Scholar
[34]
S. Dharmavaram, X. Wan, L. E. Perotti, A Lagrangian Thin-Shell Finite Element Method for Interacting Particles on Fluid Membranes. Membranes. 12 (2022) 1–20.
DOI: 10.3390/membranes12100960
Google Scholar
[35]
G. Okeke, Ak. Udo, R. Alqahtani, M. Kaplan, Ah. W. Eltayeb, A Novel Iterative Scheme for Solving Delay Differential Equations and Third Order Boundary Value Problems Via Green's Functions. AIMS Mathematics. 9 (2024) 6468–6498.
DOI: 10.3934/math.2024315
Google Scholar
[36]
A. Ruban, V. Pasternak, N. Huliieva, Prediction of the structural properties of powder materials by 3D modeling methods. Materials Science Forum. 1068 (2022) 231-238.
DOI: 10.4028/p-18k386
Google Scholar
[37]
M. Zouaou, J. Gardan, P. Lafon, A. Makke, C. Labergere, N. Recho, A Finite Element Method to Predict the Mechanical Behavior of a Pre-Structured Material Manufactured by Fused Filament Fabrication in 3D Printing. Applied Sciences. 11 (2021) 2-19.
DOI: 10.3390/app11115075
Google Scholar
[38]
A. Vasilchenko, О. Danilin, Т. Lutsenko, А. Ruban, Features of evaluation of fire resistance of reinforced concrete ribbed slab under combined effect explosion-fire. Materials Science Forum. 1038 (2021) 492–499.
DOI: 10.4028/www.scientific.net/msf.1038.492
Google Scholar
[39]
D. Barreto, J. Leak, A Guide to Modeling the Geotechnical Behavior of Soils Using the Discrete Element Method. Modeling in Geotechnical Engineering. 1 (2021) 79–100.
DOI: 10.1016/b978-0-12-821205-9.00016-2
Google Scholar
[40]
D. Lobovikov, Еl. Matygullina, L. Sirotenko, Simulation by Discrete Element Method Using Complex Particles. SSRN. 1 (2024) 1–12.
DOI: 10.2139/ssrn.4819120
Google Scholar
[41]
V. Pasternak, H. Sulym, I.M. Pasternak, Frequency domain Green's function and boundary integral equations for multifield materials and quasicrystals. International Journal of Solids and Structures. 286–287 (2024) 112562
DOI: 10.1016/j.ijsolstr.2023.112562
Google Scholar
[42]
B. Jadidi, M. Ebrahimi, F. Ein-Mozaffari, Al. Lohi, Analyzing Mixing Behavior in a Double Paddle Blender Containing Two Types of Non-Spherical Particles Through Discrete Element Method (DEM) and Response Surface Method (RSM). Powder Technology. 427 (2023) 1–20.
DOI: 10.1016/j.powtec.2023.118761
Google Scholar
[43]
P. Hirschberger, Th. Trang Võ, Urs. Peuker, H. Kruggel-Emden, A Texture Inheritance Model for Spherical Particles in Particle Replacement Method (PRM) Schemes for Breakage in Discrete Element Method (DEM) Simulations. Minerals Engineering. 205 (2024) 1–19.
DOI: 10.1016/j.mineng.2023.108491
Google Scholar
[44]
V. Pasternak, A. Ruban, M. Surianinov, S. Shapoval, Simulation modeling of an inhomogeneous medium, in particular: round, triangular, square shapes. Defect and Diffusion Forum. 428 (2023) 27–35.
DOI: 10.4028/p-sx9ljy
Google Scholar
[45]
Ah. Junaid, Ar. Muhammad, M. Zhenhua, Numerical Solutions of Troesch's Problem Based on a Faster Iterative Scheme with an Application. AIMS Mathematics. 9 (2024) 9164–9183.
DOI: 10.3934/math.2024446
Google Scholar
[46]
D. Kobylkin, O. Zachko, V. Popovych, N. Burak, R. Golovatyi, C. Wolff, Models for changes management in infrastructure projects. CEUR Workshop Proceedings, 2565 (2020) 106–115.
Google Scholar