[1]
D.L. Kitane, S. Loukman, N. Marchoudi, A. Fernandez–Galiana, F.Z. El Ansari, F. Jouali, J. Badir, J.-L. Gala, D. Bertsimas, N. Azami, O. Lakbita, O. Moudam, R. Benhida, J. Fekkak, A simple and fast spectroscopy-based technique for Covid-19 diagnosis, Sci. Rep. 11 (2021) 16740 (1-11).
DOI: 10.1038/s41598-021-95568-5
Google Scholar
[2]
F. Savinon–Flores, E. Mendez, M. Lopez–Castanos, A. Carabarin–Lima, K.A. Lopez–Castanos, M.A. Gonzalez–Fuentes, A. Mendez–Albores, A review on SERS-based detection of human virus infections: Influenza and coronavirus, Biosensors 11 (3) (2021) 66 (1-29).
DOI: 10.3390/bios11030066
Google Scholar
[3]
A.C.C. Goulart, R.A. Zangaro, H.C. Carvalho, L. Silveira Jr, Diagnosing COVID-19 in human sera with detected immunoglobulins IgM and IgG by means of Raman spectroscopy, J. Raman Spectrosc. 52 (12) (2021) 2671-2682.
DOI: 10.1002/jrs.6235
Google Scholar
[4]
A. Bedair, K. Okasha, F.R. Mansour, Spectroscopic methods for COVID-19 detection and early diagnosis, Virol. J. 19 (1) (2022) 152 (1-13).
DOI: 10.1186/s12985-022-01867-2
Google Scholar
[5]
D. Garsuault, S. El Messaoudi, M. Prabakaran, I. Cheong, A. Boulanger, M. Schmitt–Boulanger, Detection of several respiratory viruses with surface-enhanced Raman spectroscopy coupled with artificial intelligence, Clin. Spectrosc. 5 (2023) 100025 (1-9).
DOI: 10.1016/j.clispe.2023.100025
Google Scholar
[6]
M.I. Rumaling, F.P. Chee, A. Bade, L.P.W. Goh, F. Juhim, Biofingerprint detection of corona virus using Raman spectroscopy: A novel approach, SN Appl. Sci. 5 (2023) 197 (1-8).
DOI: 10.1007/s42452-023-05419-3
Google Scholar
[7]
B.F.O. Coelho, S.L.P. Nunes, Ch.A. de Franca, D. dos Santos Costa, R.F. do Carmo, R.M. Prates, E.F.S. Filho, R.P. Ramos, On the feasibility of Vis–NIR spectroscopy and machine learning for real time SARS-CoV-2 detection, Spectrochim. Acta A 308 (4) (2024) 123735 (1-10).
DOI: 10.1016/j.saa.2023.123735
Google Scholar
[8]
J. Saade, M.T.T. Pacheco, M.R. Rodrigues, L. Silveira Jr, Identification of hepatitis C in human blood serum by near-infrared Raman spectroscopy, Spectrosc. 22 (2008) 387-395.
DOI: 10.1155/2008/419783
Google Scholar
[9]
D. Nemecek, G.J. Thomas Jr, Raman spectroscopy of viruses and viral proteins, in: J. Laane (Ed.), Frontiers of Molecular Spectroscopy, Elsevier Science, Amsterdam, 2009, Ch. 16, pp.553-595.
DOI: 10.1016/b978-0-444-53175-9.00016-7
Google Scholar
[10]
M.A. Mohamed, M.R. Lentz, V. Lee, E.F. Halpern, N. Sacktor, O. Selnes, P.B. Barker, M.G. Pomper, Factor analysis of proton MR spectroscopic imaging data in HIV infection: Metabolite-derived factors help identify infection and dementia, Radiology 254 (2) (2010) 577-586.
DOI: 10.1148/radiol.09081867
Google Scholar
[11]
P.T.C. Prado, S. Escorsi–Rosset, M.C. Cervi, A.C. Santos, Image evaluation of HIV encephalopathy: A multimodal approach using quantitative MR techniques, Paediatric Neuroradiol. 53 (2011) 899-908.
DOI: 10.1007/s00234-011-0869-8
Google Scholar
[12]
L. Fumagalli, D. Esteban–Ferrer, A. Cuervo, J.L. Carrascosa, G. Gomila, Label-free identification of single dielectric nanoparticles and viruses with ultraweak polarization forces, Nat. Mater. 11 (2012) 808-816.
DOI: 10.1038/nmat3369
Google Scholar
[13]
P. Kervalishvili, T. Bzhalava, Spectroscopy of Bioparticles, Georgian Tech. Univ. Tbilisi, 2017.
Google Scholar
[14]
T. Bzhalava, P. Kervalishvili, Study of spectroscopic properties of nanosized particles of core–shell morphology, J. Phys. Conf. Ser. 987 (2018) 012023 (1-6).
DOI: 10.1088/1742-6596/987/1/012023
Google Scholar
[15]
Y. Kumamoto, A. Taguchi, S. Kawata, Deep-ultraviolet biomolecular imaging and analysis, Adv. Opt. Mater. 7 (5) (2018) 1801099 (1-18).
Google Scholar
[16]
Y. Lu, Y. Lin, Z. Zheng, X. Tang, J. Lin, X. Liu, M. Liu, G. Chen, S. Qiu, T. Zhou, Y. Lin, Sh. Feng, Label free hepatitis B detection based on serum derivative surface enhanced Raman spectroscopy combined with multivariate analysis, Biomed. Opt. Express 9 (10) (2018) 4755-4766.
DOI: 10.1364/boe.9.004755
Google Scholar
[17]
S.E. Dowd, Characterization of ss-RNA Structures Using Vibrational Spectroscopies (PhD Thesis), Univ. Manchester, Manchester, 2020.
Google Scholar
[18]
M.C.D. Santos, C.L.M. Morais, K.M.G. Lima, ATR–FTIR spectroscopy for virus identification: A powerful alternative, Biomed. Spectrosc. Imaging 1 (2020) 1-16.
Google Scholar
[19]
D.L.D. Freitas, A.F.S. Peres, L.G. Silva, J.V.M. Mariz, M.G. Santos, R.S.P. Morais, C.L.M. Morais, F.L. Martin, D.A.V. Pascoal, J.D. de A.S. Camargo, J.C.O. Crispim, K.M.G. Lima, Near-infrared spectroscopy of blood plasma with chemometrics towards HIV discrimination during pregnancy, Sci. Rep. 11 (2021) 22609 (1-8).
DOI: 10.1038/s41598-021-02105-5
Google Scholar
[20]
F. Batool, H. Nawaz, M.I. Majeed, N. Rashid, S. Bashir, S. Akbar, M. Abubakar, Sh. Ahmad, M.N. Ashraf, S. Ali, M. Kashif, I. Amin, SERS-based viral load quantification of hepatitis B virus from PCR products, Spectrochim. Acta A 255 (2021) 119722 (1-12).
DOI: 10.1016/j.saa.2021.119722
Google Scholar
[21]
M. Boodaghidizaji, Sh.M. Athalye, S. Thakur, E. Esmaili, M.S. Verma, A.M. Ardekani, Characterizing viral samples using machine learning for Raman and absorption spectroscopy, Microbiol. Open 11 (6) (2022) e1336 (1-11).
DOI: 10.22541/au.166723604.45552506/v1
Google Scholar
[22]
J. Lukose, A.K. Barik, N. Mithun, M.S. Pavithran, S.D. George, V.M. Murukeshan, S. Chidangil, Raman spectroscopy for viral diagnostics, Biophys. Rev. 15 (2) (2023) 199-221.
DOI: 10.1007/s12551-023-01059-4
Google Scholar
[23]
E.W. Blanch, D.J. Robinson, L. Hecht, L.D. Barron, A comparison of the solution structures of tobacco rattle and tobacco mosaic viruses from Raman optical activity, J. Gen. Virol. 82 (6) (2001) 1499-1502.
DOI: 10.1099/0022-1317-82-6-1499
Google Scholar
[24]
Ch. Farber, D. Kurouski, Detection and identification of plant pathogens on maize kernels with a hand-held Raman spectrometer, Anal. Chem. 90 (5) (2018) 3009-3012.
DOI: 10.1021/acs.analchem.8b00222
Google Scholar
[25]
T.N. Bzhalava, M.A. Tsirekidze, Electrodynamics 2D boundary problems solution for application of nano-bio-particles characterization, Int. J. Adv. Sci. Eng. Technol. 7 (4) (2019) 67-72.
Google Scholar
[26]
Ch. Farber, R. Bryan, L. Paetzold, Ch. Rush, D. Kurouski, Non-invasive characterization of single-, double- and triple-viral diseases of wheat with a hand-held Raman spectrometer, Front. Plant Sci. 11 (2020) 01300 (1-7).
DOI: 10.3389/fpls.2020.01300
Google Scholar
[27]
L. Mandrile, Ch. D'Errico, F. Nuzzo, G. Barzan, S. Matic, A.M. Giovannozzi, A.M. Rossi, G. Gambino, E. Noris, Raman spectroscopy applications in grapevine: Metabolic analysis of plants infected by two different viruses, Front. Plant Sci. 13 (2022) 917226 (1-14).
DOI: 10.3389/fpls.2022.917226
Google Scholar
[28]
EPPO Global Datasheet – Potyvirus Plum Poxi: https://gd.eppo.int/taxon/PPV000
Google Scholar
[29]
R.A.C. Jones, Global plant virus disease pandemics and epidemic, Plants 10 (2) (2021) 233 (1-42).
Google Scholar
[30]
A.H. Peruski, L.F. Peruski Jr, Immunological methods for detection and identification of infectious disease and biological warfare agents, Clin. Diagn. Lab. Immunol. 10 (4) (2003) 506-513.
DOI: 10.1128/cdli.10.4.506-513.2003
Google Scholar
[31]
Z.P. Morehouse, C.M. Proctor, G.L. Ryan, R.J. Nash, A novel two-step, direct-to-PCR method for virus detection off swabs using human coronavirus 229E, Virol. J. 17 (2020) 129 (1-6).
DOI: 10.1186/s12985-020-01405-y
Google Scholar
[32]
A. Cassedy, A. Parle–McDermott, R. O'Kennedy, Virus detection: A review of the current and emerging molecular and immunological methods, Front. Mol. Biosci. 8 (2021) 637559 (1-21).
DOI: 10.3389/fmolb.2021.637559
Google Scholar
[33]
ELISA: https://my.clevelandclinic.org/health/articles/24990-elisa
Google Scholar
[34]
R.R. Jones, D.C. Hooper, L. Zhang, D. Wolverson, V.K. Valev, Raman techniques: Fundamentals and frontiers, Nanoscale Res. Lett. 14 (2019) 231 (1-34).
DOI: 10.1186/s11671-019-3039-2
Google Scholar
[35]
B. Goh, P. Visendi, A.R. Lord, S. Ciocchetta, W. Liu, M.T. Sikulu–Lord, First report of the detection of DENV1 in human blood plasma with near-infrared spectroscopy, Viruses 14 (2022) 2248 (1-17).
DOI: 10.3390/v14102248
Google Scholar
[36]
F.L. Martin, J.G. Kelly, V. Llabjani, P.L. Martin–Hirsch, I.I. Patel, J. Trevisan, N.J. Fullwood, M.J. Walsh, Distinguishing cell types or populations based on the computational analysis of their infrared spectra, Nat. Protocols 5 (11) (2010) 1748-1760.
DOI: 10.1038/nprot.2010.133
Google Scholar
[37]
Molecular vibrations: https://chem.libretexts.org/Bookshelves/Organic_Chemistry
Google Scholar
[38]
Sh.P. Chelvam, A.J.Y. Ng, J. Huang, E. Lee, M. Baranski, D. Yong, R.B.H. Williams, S.L. Springs, R.J. Ram, Machine learning aided UV absorbance spectroscopy for microbial contamination in cell therapy products, Sci. Rep. 15 (2025) 7631 (1-14).
DOI: 10.1038/s41598-024-83114-y
Google Scholar
[39]
P.J. Kervalishvili, T.N. Bzhalava, Investigations of spectroscopic characteristics of virus-like nanobioparticles, American J. Condens. Matter Phys. 6 (1) (2016)7-16.
Google Scholar
[40]
L. Chakhvashvili, T. Berberashvili, P. Kervalishvili, T. Bzhalava, Method for Viruses Vibrational Frequency Determination, Georgia Patent # P 2022 7426 B (2022).
Google Scholar
[41]
Virus particle Explorer db v3.0: https://viperdb.org/Info_Page.php?VDB=3j7v
Google Scholar