Review on Spectroscopy Methods for Studying Viral Nanomaterials

Article Preview

Abstract:

Studying the spectroscopic properties of nanomaterials and nanoparticles is essential for developing nanomaterial science and nanotechnology. Spectroscopic properties of nanoparticles of biological origin, especially pathogenic nanoparticles such as viruses, became actual after the Covid-19 pandemic, causing economic, human and social harm. Known spectra of the utmost atoms, molecules, and compositions are well used for identification. In this paper, we provide a concise review of the experimental results obtained from advanced spectroscopy techniques by various scientific groups and demonstrate the possibility of using spectra of viruses to detect and identify diseases caused by pathogens. Raman, ultraviolet (UV), and infrared (IR) spectroscopy methods for experimental study of viral materials are considered.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

133-144

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.L. Kitane, S. Loukman, N. Marchoudi, A. Fernandez–Galiana, F.Z. El Ansari, F. Jouali, J. Badir, J.-L. Gala, D. Bertsimas, N. Azami, O. Lakbita, O. Moudam, R. Benhida, J. Fekkak, A simple and fast spectroscopy-based technique for Covid-19 diagnosis, Sci. Rep. 11 (2021) 16740 (1-11).

DOI: 10.1038/s41598-021-95568-5

Google Scholar

[2] F. Savinon–Flores, E. Mendez, M. Lopez–Castanos, A. Carabarin–Lima, K.A. Lopez–Castanos, M.A. Gonzalez–Fuentes, A. Mendez–Albores, A review on SERS-based detection of human virus infections: Influenza and coronavirus, Biosensors 11 (3) (2021) 66 (1-29).

DOI: 10.3390/bios11030066

Google Scholar

[3] A.C.C. Goulart, R.A. Zangaro, H.C. Carvalho, L. Silveira Jr, Diagnosing COVID-19 in human sera with detected immunoglobulins IgM and IgG by means of Raman spectroscopy, J. Raman Spectrosc. 52 (12) (2021) 2671-2682.

DOI: 10.1002/jrs.6235

Google Scholar

[4] A. Bedair, K. Okasha, F.R. Mansour, Spectroscopic methods for COVID-19 detection and early diagnosis, Virol. J. 19 (1) (2022) 152 (1-13).

DOI: 10.1186/s12985-022-01867-2

Google Scholar

[5] D. Garsuault, S. El Messaoudi, M. Prabakaran, I. Cheong, A. Boulanger, M. Schmitt–Boulanger, Detection of several respiratory viruses with surface-enhanced Raman spectroscopy coupled with artificial intelligence, Clin. Spectrosc. 5 (2023) 100025 (1-9).

DOI: 10.1016/j.clispe.2023.100025

Google Scholar

[6] M.I. Rumaling, F.P. Chee, A. Bade, L.P.W. Goh, F. Juhim, Biofingerprint detection of corona virus using Raman spectroscopy: A novel approach, SN Appl. Sci. 5 (2023) 197 (1-8).

DOI: 10.1007/s42452-023-05419-3

Google Scholar

[7] B.F.O. Coelho, S.L.P. Nunes, Ch.A. de Franca, D. dos Santos Costa, R.F. do Carmo, R.M. Prates, E.F.S. Filho, R.P. Ramos, On the feasibility of Vis–NIR spectroscopy and machine learning for real time SARS-CoV-2 detection, Spectrochim. Acta A 308 (4) (2024) 123735 (1-10).

DOI: 10.1016/j.saa.2023.123735

Google Scholar

[8] J. Saade, M.T.T. Pacheco, M.R. Rodrigues, L. Silveira Jr, Identification of hepatitis C in human blood serum by near-infrared Raman spectroscopy, Spectrosc. 22 (2008) 387-395.

DOI: 10.1155/2008/419783

Google Scholar

[9] D. Nemecek, G.J. Thomas Jr, Raman spectroscopy of viruses and viral proteins, in: J. Laane (Ed.), Frontiers of Molecular Spectroscopy, Elsevier Science, Amsterdam, 2009, Ch. 16, pp.553-595.

DOI: 10.1016/b978-0-444-53175-9.00016-7

Google Scholar

[10] M.A. Mohamed, M.R. Lentz, V. Lee, E.F. Halpern, N. Sacktor, O. Selnes, P.B. Barker, M.G. Pomper, Factor analysis of proton MR spectroscopic imaging data in HIV infection: Metabolite-derived factors help identify infection and dementia, Radiology 254 (2) (2010) 577-586.

DOI: 10.1148/radiol.09081867

Google Scholar

[11] P.T.C. Prado, S. Escorsi–Rosset, M.C. Cervi, A.C. Santos, Image evaluation of HIV encephalopathy: A multimodal approach using quantitative MR techniques, Paediatric Neuroradiol. 53 (2011) 899-908.

DOI: 10.1007/s00234-011-0869-8

Google Scholar

[12] L. Fumagalli, D. Esteban–Ferrer, A. Cuervo, J.L. Carrascosa, G. Gomila, Label-free identification of single dielectric nanoparticles and viruses with ultraweak polarization forces, Nat. Mater. 11 (2012) 808-816.

DOI: 10.1038/nmat3369

Google Scholar

[13] P. Kervalishvili, T. Bzhalava, Spectroscopy of Bioparticles, Georgian Tech. Univ. Tbilisi, 2017.

Google Scholar

[14] T. Bzhalava, P. Kervalishvili, Study of spectroscopic properties of nanosized particles of core–shell morphology, J. Phys. Conf. Ser. 987 (2018) 012023 (1-6).

DOI: 10.1088/1742-6596/987/1/012023

Google Scholar

[15] Y. Kumamoto, A. Taguchi, S. Kawata, Deep-ultraviolet biomolecular imaging and analysis, Adv. Opt. Mater. 7 (5) (2018) 1801099 (1-18).

Google Scholar

[16] Y. Lu, Y. Lin, Z. Zheng, X. Tang, J. Lin, X. Liu, M. Liu, G. Chen, S. Qiu, T. Zhou, Y. Lin, Sh. Feng, Label free hepatitis B detection based on serum derivative surface enhanced Raman spectroscopy combined with multivariate analysis, Biomed. Opt. Express 9 (10) (2018) 4755-4766.

DOI: 10.1364/boe.9.004755

Google Scholar

[17] S.E. Dowd, Characterization of ss-RNA Structures Using Vibrational Spectroscopies (PhD Thesis), Univ. Manchester, Manchester, 2020.

Google Scholar

[18] M.C.D. Santos, C.L.M. Morais, K.M.G. Lima, ATR–FTIR spectroscopy for virus identification: A powerful alternative, Biomed. Spectrosc. Imaging 1 (2020) 1-16.

Google Scholar

[19] D.L.D. Freitas, A.F.S. Peres, L.G. Silva, J.V.M. Mariz, M.G. Santos, R.S.P. Morais, C.L.M. Morais, F.L. Martin, D.A.V. Pascoal, J.D. de A.S. Camargo, J.C.O. Crispim, K.M.G. Lima, Near-infrared spectroscopy of blood plasma with chemometrics towards HIV discrimination during pregnancy, Sci. Rep. 11 (2021) 22609 (1-8).

DOI: 10.1038/s41598-021-02105-5

Google Scholar

[20] F. Batool, H. Nawaz, M.I. Majeed, N. Rashid, S. Bashir, S. Akbar, M. Abubakar, Sh. Ahmad, M.N. Ashraf, S. Ali, M. Kashif, I. Amin, SERS-based viral load quantification of hepatitis B virus from PCR products, Spectrochim. Acta A 255 (2021) 119722 (1-12).

DOI: 10.1016/j.saa.2021.119722

Google Scholar

[21] M. Boodaghidizaji, Sh.M. Athalye, S. Thakur, E. Esmaili, M.S. Verma, A.M. Ardekani, Characterizing viral samples using machine learning for Raman and absorption spectroscopy, Microbiol. Open 11 (6) (2022) e1336 (1-11).

DOI: 10.22541/au.166723604.45552506/v1

Google Scholar

[22] J. Lukose, A.K. Barik, N. Mithun, M.S. Pavithran, S.D. George, V.M. Murukeshan, S. Chidangil, Raman spectroscopy for viral diagnostics, Biophys. Rev. 15 (2) (2023) 199-221.

DOI: 10.1007/s12551-023-01059-4

Google Scholar

[23] E.W. Blanch, D.J. Robinson, L. Hecht, L.D. Barron, A comparison of the solution structures of tobacco rattle and tobacco mosaic viruses from Raman optical activity, J. Gen. Virol. 82 (6) (2001) 1499-1502.

DOI: 10.1099/0022-1317-82-6-1499

Google Scholar

[24] Ch. Farber, D. Kurouski, Detection and identification of plant pathogens on maize kernels with a hand-held Raman spectrometer, Anal. Chem. 90 (5) (2018) 3009-3012.

DOI: 10.1021/acs.analchem.8b00222

Google Scholar

[25] T.N. Bzhalava, M.A. Tsirekidze, Electrodynamics 2D boundary problems solution for application of nano-bio-particles characterization, Int. J. Adv. Sci. Eng. Technol. 7 (4) (2019) 67-72.

Google Scholar

[26] Ch. Farber, R. Bryan, L. Paetzold, Ch. Rush, D. Kurouski, Non-invasive characterization of single-, double- and triple-viral diseases of wheat with a hand-held Raman spectrometer, Front. Plant Sci. 11 (2020) 01300 (1-7).

DOI: 10.3389/fpls.2020.01300

Google Scholar

[27] L. Mandrile, Ch. D'Errico, F. Nuzzo, G. Barzan, S. Matic, A.M. Giovannozzi, A.M. Rossi, G. Gambino, E. Noris, Raman spectroscopy applications in grapevine: Metabolic analysis of plants infected by two different viruses, Front. Plant Sci. 13 (2022) 917226 (1-14).

DOI: 10.3389/fpls.2022.917226

Google Scholar

[28] EPPO Global Datasheet – Potyvirus Plum Poxi: https://gd.eppo.int/taxon/PPV000

Google Scholar

[29] R.A.C. Jones, Global plant virus disease pandemics and epidemic, Plants 10 (2) (2021) 233 (1-42).

Google Scholar

[30] A.H. Peruski, L.F. Peruski Jr, Immunological methods for detection and identification of infectious disease and biological warfare agents, Clin. Diagn. Lab. Immunol. 10 (4) (2003) 506-513.

DOI: 10.1128/cdli.10.4.506-513.2003

Google Scholar

[31] Z.P. Morehouse, C.M. Proctor, G.L. Ryan, R.J. Nash, A novel two-step, direct-to-PCR method for virus detection off swabs using human coronavirus 229E, Virol. J. 17 (2020) 129 (1-6).

DOI: 10.1186/s12985-020-01405-y

Google Scholar

[32] A. Cassedy, A. Parle–McDermott, R. O'Kennedy, Virus detection: A review of the current and emerging molecular and immunological methods, Front. Mol. Biosci. 8 (2021) 637559 (1-21).

DOI: 10.3389/fmolb.2021.637559

Google Scholar

[33] ELISA: https://my.clevelandclinic.org/health/articles/24990-elisa

Google Scholar

[34] R.R. Jones, D.C. Hooper, L. Zhang, D. Wolverson, V.K. Valev, Raman techniques: Fundamentals and frontiers, Nanoscale Res. Lett. 14 (2019) 231 (1-34).

DOI: 10.1186/s11671-019-3039-2

Google Scholar

[35] B. Goh, P. Visendi, A.R. Lord, S. Ciocchetta, W. Liu, M.T. Sikulu–Lord, First report of the detection of DENV1 in human blood plasma with near-infrared spectroscopy, Viruses 14 (2022) 2248 (1-17).

DOI: 10.3390/v14102248

Google Scholar

[36] F.L. Martin, J.G. Kelly, V. Llabjani, P.L. Martin–Hirsch, I.I. Patel, J. Trevisan, N.J. Fullwood, M.J. Walsh, Distinguishing cell types or populations based on the computational analysis of their infrared spectra, Nat. Protocols 5 (11) (2010) 1748-1760.

DOI: 10.1038/nprot.2010.133

Google Scholar

[37] Molecular vibrations: https://chem.libretexts.org/Bookshelves/Organic_Chemistry

Google Scholar

[38] Sh.P. Chelvam, A.J.Y. Ng, J. Huang, E. Lee, M. Baranski, D. Yong, R.B.H. Williams, S.L. Springs, R.J. Ram, Machine learning aided UV absorbance spectroscopy for microbial contamination in cell therapy products, Sci. Rep. 15 (2025) 7631 (1-14).

DOI: 10.1038/s41598-024-83114-y

Google Scholar

[39] P.J. Kervalishvili, T.N. Bzhalava, Investigations of spectroscopic characteristics of virus-like nanobioparticles, American J. Condens. Matter Phys. 6 (1) (2016)7-16.

Google Scholar

[40] L. Chakhvashvili, T. Berberashvili, P. Kervalishvili, T. Bzhalava, Method for Viruses Vibrational Frequency Determination, Georgia Patent # P 2022 7426 B (2022).

Google Scholar

[41] Virus particle Explorer db v3.0: https://viperdb.org/Info_Page.php?VDB=3j7v

Google Scholar