[1]
T. Zhang, D. Chen, H. Yang, W. Zhao, Y. Wang, H. Zhou, Spreading Behavior of Non-Spherical Particles with Reconstructed Shapes Using Discrete Element Method in Additive Manufacturing. Polymers. 16 (2024) 1–12.
DOI: 10.3390/polym16091179
Google Scholar
[2]
Zah. Ghasemi Monfared, J. Gunnar I. Hellstrom, Ken. Umeki, The Impact of Discrete Element Method Parameters on Realistic Representation of Spherical Particles in a Packed Bed. Processes. 12 (2024) 1–17.
DOI: 10.3390/pr12010183
Google Scholar
[3]
Huabin. Wang, Jianmei. Li, Gaoyang. Hu, Bo. Zhou, Yuchen. Guo, Effect of Binder Coatings on the Fracture Behavior of Polymer-Crystal Composite Particles Using the Discrete Element Method. Coatings. 11 (2021) 1-15.
DOI: 10.3390/coatings11091075
Google Scholar
[4]
V. Pasternak, A. Ruban, O. Zemlianskyi, G. Ivanov, Using various methods of imaging and visualization for studying heterogeneous structures at micro- and nanoscales. Materials Science Forum. 1126 (2024) 131–141
DOI: 10.4028/p-85YY1q
Google Scholar
[5]
Y. Huang, W. Sun, Q. Xie, H. You, K. Wu, Discrete Element Simulation of the Shear Behavior of Binary Mixtures Composed of Spherical and Cubic Particles. Applied Sciences. 13 (2023) 1–19.
DOI: 10.3390/app13169163
Google Scholar
[6]
A. Sharshanov, O. Tarakhno, A. Babayev, O. Skorodumova, Mathematical Modeling of the Protective Effect of Ethyl Silicate Gel Coating on Textile Materials under Conditions of Constant or Dynamic Thermal Exposure. In Key Engineering Materials. 927 (2022) 77–86. Trans Tech Publications, Ltd
DOI: 10.4028/p-8t33rc
Google Scholar
[7]
H. Zhao, Z. Zheng, R. Tan, W. Liu, Z. Zhang, Modeling Shearing and Bending Behavior of Kiwifruit Branches Using the Discrete Element Method. Applied Sciences. 14 (2024) 1–14.
DOI: 10.3390/app142310920
Google Scholar
[8]
V. Pasternak, A. Ruban, O. Holii, S. Vavreniuk, Mathematical model of the dynamics of spherical elements. Advances in Science and Technology. 156 (2024) 117–125
DOI: 10.4028/p-vqM060
Google Scholar
[9]
M. Aftabi, K. Ahangari, Al. Naghi Dehghan, Investigating the Effect of Layering and Schistosity on the Mechanical Behavior of Rocks Using the Discrete Element Method. Rudarsko-Geološko-Naftni Zbornik. 1 (2023) 41–48.
DOI: 10.17794/rgn.2023.5.4
Google Scholar
[10]
V. Pasternak, A. Ruban, Y. Horbachenko, S. Vavreniuk, Computer modelling of the process of separation of heterogeneous elements (spheres). Advances in Science and Technology. 156 (2024) 127–136
DOI: 10.4028/p-5aAMEf
Google Scholar
[11]
L. Zhou, M.A. Elemam, R.K. Agarwal, W. Shi, Modeling of Aerodynamic Systems. Discrete Element Method for Multiphase Flows with Biogenic Particles. 1 (2024) 19–63.
DOI: 10.1007/978-3-031-67729-8_3
Google Scholar
[12]
V. Pasternak, A. Ruban, O. Bilotil, D. Karpova, Effective application of numerical approaches and Green functions for the process of modelling spheres. Advances in Science and Technology. 156 (2024) 3–13
DOI: 10.4028/p-5KGuD9
Google Scholar
[13]
Kovalov, A., Purdenko, R., Otrosh, Y., Tоmеnkо V., Rashkevich, N., Shcholokov, E., Pidhornyy, M., Zolotova, N., Suprun, O. Assessment of fire resistance of fireproof reinforced concrete structures. Eastern-European Journal of Enterprise Technologies. 5(1 (119) (2022) 53–61.
DOI: 10.15587/1729-4061.2022.266219
Google Scholar
[14]
J. Wang, Zh. Zhang, Fu. Han, Sh. Chen, W. Ying, Modeling of laser power attenuation by powder particles for laser solid forming. Procedia CIRP. 95 (2020) 42–47.
DOI: 10.1016/j.procir.2020.02.286
Google Scholar
[15]
H.M. Lee, T.H. Kim, G.H. Yoon, Analysis of Cone-Shaped Projectile Behavior During Penetration into Granular Particles Using the Discrete Element Method. Computational Particle Mechanics. 11 (2024) 689–703.
DOI: 10.1007/s40571-023-00647-1
Google Scholar
[16]
V. Pasternak, A. Ruban, O. Chernenko, O. Nadon, Use of the boundary element method for solving problems of predicting the regularities of formation of the structure of non-isometric components. Advances in Science and Technology. 156 (2024) 15–25
DOI: 10.4028/p-Xm5pzL
Google Scholar
[17]
R. Hesse, F. Krull, S. Antonyuk, Prediction of Random Packing Density and Flowability for Non-Spherical Particles by Deep Convolutional Neural Networks and Discrete Element Method simulations. Powder Technology. 393 (2021) 559–581.
DOI: 10.1016/j.powtec.2021.07.056
Google Scholar
[18]
T. Ueda, Reproducibility of the Repose Angle, Porosity, and Coordination Number of Particles Generated by Spherical Harmonic-Based Principal Component Analysis Using Discrete Element Simulation. Powder Technology. 415 (2023) 1–22.
DOI: 10.1016/j.powtec.2022.118143
Google Scholar
[19]
V. Pasternak, A. Ruban, K. Pasynchuk, P. Polyanskyi, Special features of using mathematical modeling for the study of tetrahedral elements. Advances in Science and Technology. 156 (2024) 27–37
DOI: 10.4028/p-DBbwY3
Google Scholar
[20]
P. Hirschberger, Th. Trang Võ, Urs. Peuker, H. Kruggel-Emden, A Texture Inheritance Model for Spherical Particles in Particle Replacement Method (PRM) Schemes for Breakage in Discrete Element Method (DEM) Simulations. Minerals Engineering. 205 (2024) 1–19.
DOI: 10.1016/j.mineng.2023.108491
Google Scholar
[21]
V. Pasternak, O. Zabolotnyi, K. Svirzhevskyi, I. Zadorozhnikova, J. Machado, Influence of mechanical processing on the durability of parts in additive manufacturing conditions. Lecture Notes in Mechanical Engineering. (2023)24–35
DOI: 10.1007/978-3-031-09382-1_3
Google Scholar
[22]
Zhu. Fang, Xia. Qian, Y. Zhang, Wen. Liu, Sh. Li, A New Discrete Element Method for Small Adhesive Non-Spherical Particles. Journal of Computational Physics. 513 (2024) 1–20.
DOI: 10.1016/j.jcp.2024.113193
Google Scholar
[23]
A. Ruban, V. Pasternak, N. Huliieva, Prediction of the structural properties of powder materials by 3D modeling methods. Materials Science Forum. 1068 (2022) 231–238.
DOI: 10.4028/p-18k386
Google Scholar
[24]
M. Brown, R. M'Saoubi, P. Crawforth, A. Mantle, J. McGourlay, H. Ghadbeigi, On deformation characterisation of machined surfaces and machining-induced white layers in a milled titanium alloy. Journal of Materials Processing Tech.. 299 (2022) 1–15.
DOI: 10.1016/j.jmatprotec.2021.117378
Google Scholar
[25]
V. Pasternak, H. Sulym, I.M. Pasternak, I. Hotsyk, Extended Stroh formalism for plane problems of thermoelasticity of quasicrystals with applications to Green's functions and fracture mechanics. International Journal of Engineering Science. 203 (2024) 104124. https://www.sciencedirect.com/science/article/abs/pii/S0020722524001083
DOI: 10.1016/j.ijengsci.2024.104124
Google Scholar
[26]
Ch. Hoshishima, Sh. Ohsaki, H. Nakamura, S. Watano, Parameter Calibration of Discrete Element Method Modelling for Cohesive and Non-Spherical Particles of Powder. Powder Technology. 386 (2021) 199–208.
DOI: 10.1016/j.powtec.2021.03.044
Google Scholar
[27]
M. Prasanna, Ar. Polojärvi, Breakage in Quasi-Static Discrete Element Simulations of Non-Spherical Particles-An Application to Ice Rubble. SSRN. 1 (2023) 1–23.
DOI: 10.2139/ssrn.4405130
Google Scholar
[28]
Sh. Zhao, J. Zhaо, SudoDEM: Unleashing the Predictive Power of the Discrete Element Method on Simulation for Non-Spherical Granular Particles. Computer Physics Communications. 259 (2021) 1–19.
DOI: 10.1016/j.cpc.2020.107670
Google Scholar
[29]
O. Mirgorod, G. Shabanova, A. Ruban, V. Shvedun, Experiment planning for prospective use of barium-containing alumina cement for refractory concrete making. Materials Science Forum. 1038 (2021) 330–335.
DOI: 10.4028/www.scientific.net/msf.1038.330
Google Scholar
[30]
V. Pasternak, H. Sulym, I.M. Pasternak, Frequency domain Green's function and boundary integral equations for multifield materials and quasicrystals. International Journal of Solids and Structures. 286–287 (2024) 112562
DOI: 10.1016/j.ijsolstr.2023.112562
Google Scholar
[31]
P. Liu, J. Liu, H. Du, Z. Yin, A Method of Normal Contact Force Calculation Between Spherical Particles for Discrete Element Method. IET Conference Proceedings. 1 (2022)1–20.
DOI: 10.1049/icp.2022.1609
Google Scholar
[32]
B. Jadidi, M. Ebrahimi, F. Ein-Mozaffari, Al. Lohi, Analyzing Mixing Behavior in a Double Paddle Blender Containing Two Types of Non-Spherical Particles Through Discrete Element Method (DEM) and Response Surface Method (RSM). Powder Technology. 427 (2023) 1–20.
DOI: 10.1016/j.powtec.2023.118761
Google Scholar
[33]
A. Vasilchenko, O. Danilin, T. Lutsenko, A. Ruban, D. Nestorenko, Features of some polymer building materials behavior at heating. Materials Science Forum. 1006 (2020) 47–54.
DOI: 10.4028/www.scientific.net/msf.1006.47
Google Scholar
[34]
M. Ahmadian, Simulation of Irregularly Shaped Particles Using Coupling Method of Lattice Boltzmann and Discrete Element Modelling. UNBS. 1 (2024) 1–65.
DOI: 10.24124/2024/59473
Google Scholar
[35]
B. Prydalnyi, H. Sulym, Identification of analytical dependencies of the operational characteristics of the workpiece clamping mechanisms with the rotary movement of the input link. Acta Mechanica et Automatica. 15 (2021) 47–52
DOI: 10.2478/ama-2021-0007
Google Scholar
[36]
A. Vasilchenko, О. Danilin, Т. Lutsenko, А. Ruban, Features of evaluation of fire resistance of reinforced concrete ribbed slab under combined effect explosion-fire. Materials Science Forum. 1038 (2021) 492–499
DOI: 10.4028/www.scientific.net/msf.1038.492
Google Scholar
[37]
D. Kobylkin, O. Zachko, V. Popovych, N. Burak, R. Golovatyi, C. Wolff, Models for changes management in infrastructure projects. CEUR Workshop Proceedings. 2565 (2020) 106–115.
Google Scholar
[38]
V. Pasternak, A. Ruban, M. Surianinov, S. Shapoval, Simulation modeling of an inhomogeneous medium, in particular: round, triangular, square shapes. Defect and Diffusion Forum. 428 (2023) 27–35.
DOI: 10.4028/p-sx9ljy
Google Scholar
[39]
S. Logvinkov, І. Ostapenko, О. Borisenko, О. Skorodumova, А. Ivashura, Prediction of melting paths of wollastonite-containing compositions. China's Refractories. 29(3) (2020) 13–18.
Google Scholar
[40]
V. Pasternak, A. Ruban, V. Shvedun, J. Veretennikova, Development of a 3d computer simulation model using C++ methods. Defect and Diffusion Forum. 428 (2023) 57–66.
DOI: 10.4028/p-5iwtnl
Google Scholar
[41]
Y. Kyryliv, V. Kyryliv , N. Sas, V. Dutka, Residual Stresses Formed by Vibration-Centrifugal Hardening. Advances in Materials Science and Engineering. (2020) 1–7.
DOI: 10.1155/2020/5189473
Google Scholar
[42]
V. Pasternak, A. Ruban, N. Zolotova, O. Suprun, Computer modeling of inhomogeneous media using the Abaqus software package. Defect and Diffusion Forum. 428 (2023) 47–56. https://www.scientific.net/DDF.428.47
DOI: 10.4028/p-xti7h9
Google Scholar