[1]
B.S. Chhikara, K. Parang, Global cancer statistics 2022: The trends projection analysis, Chem. Biol. Lett. 10 (1) (2023) 1-16.
Google Scholar
[2]
R. Siegel, K. Miller, N. Sandeep, A. Jemal, Cancer statistics, 2022, CA Cancer J. Clin. 73 (1) (2023) 1-112.
Google Scholar
[3]
J. Christodouleas, R. Forrest, C. Ainsley, Z. Tochner, S. Hahn, E. Glatstein, Short-term and long-term health risks of nuclear-power-plant accidents, New England J. Med. 364 (2011) 2334-2341.
DOI: 10.1056/nejmra1103676
Google Scholar
[4]
K. Kotenko, S. Shinkarev, I. Abramov, E. Granovskaia, V. Iatsenko, I. Gavrilin, I. Margulis, O. Garetskaia, T. Imanaka, M. Khoshi, Comparative analysis of the radionuclide composition in fallout after the Chernobyl and the Fukushima accidents, Med. Tr. Prom. Ekol. 10 (2012) 1-5.
Google Scholar
[5]
Plans for New Reactors Worldwide: https://world-nuclear.org/information-library/current-and-future-generation/plans-for-new-reactors-worldwide.aspx/
Google Scholar
[6]
Particle Therapy Co-Operative Group: https://ptcog.site/index.php/patient-statistics-2
Google Scholar
[7]
E. Freireich, R. Taylor, J. Hananian, O. Selawry, J. Holland, B. Hoogstraten, I.Wolman, E. Abir, A. Sawitsky, S. Lee, The effectiveness of combinations of antileukemic agents in inducing and maintaining remission in children with acute leukemia, Blood 26 (1965) 642-656.
DOI: 10.1182/blood.v26.5.642.642
Google Scholar
[8]
Y. Yagawa, K. Tanigawa, Y. Kobayashi, M. Yamamoto, Cancer immunity and therapy using hyperthermia with immunotherapy, radiotherapy, chemotherapy, and surgery, J. Cancer Metastasis Treat. 3 (2) (2017) 218-230.
DOI: 10.20517/2394-4722.2017.35
Google Scholar
[9]
N. Mitagvaria, A. Chirakadze, M. Devdariani, T. Davlianidze, T. Rtveladze, Whole body hyperthermia induced phenomenon of hormesis (Experimental study), Bull. Georgian Natl. Acad. Sci. 14 (4) (2020) 67-74.
Google Scholar
[10]
A. Chirakadze, G. Chubinidze, M. Bose, L. Hatui, N. Dvali, N. Khuskivadze, S. Bhattacharyya, R. Pradhan, M. Devdariani, L. Gumberidze, L. Davlianidze, N. Kostiuchik, Selective toxicity testing of gemcitabine, DMSO, rubidium and cesium salts and saline solution compositions in A549 and NHDF cell lines, Bull. Georgian Natl. Acad. Sci. 17 (3) (2023) 115-121.
Google Scholar
[11]
D. Hanahan, G. Bergers, E. Bergsland, Less is more, regularly: Metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice, J. Clin. Invest. 105 (2000) 1045-1047.
DOI: 10.1172/jci9872
Google Scholar
[12]
M. Gottesman, T. Fojo, S. Bates, Multidrug resistance in cancer: Role of ATP-dependent transporters, Nat. Rev. Cancer 2 (2002) 48-58.
DOI: 10.1038/nrc706
Google Scholar
[13]
A. Khdair, D. Chen, Y. Patil, L. Ma, Q. Dou, M. Shekhar, J. Panyam, Nanoparticle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance, J. Control Release 141 (2010) 137-144.
DOI: 10.1016/j.jconrel.2009.09.004
Google Scholar
[14]
A. Girigoswami, K. Girigoswami, Potential applications of nanoparticles in improving the outcome of lung cancer treatment, Genes 14 (2023) 1370-1377.
DOI: 10.3390/genes14071370
Google Scholar
[15]
K. McNamara, S.A.M. Tofail, Nanoparticles in biomedical applications, Adv. Phys. X 2 (1) (2016) 54-88.
Google Scholar
[16]
V. Yagublu, A. Karimova, J. Hajibabazadeh, Ch. Reissfelder, M. Muradov, S. Bellucci, A. Allahverdiyev, Overview of physicochemical properties of nanoparticles as drug carriers for targeted cancer therapy, J. Funct. Biomater. 13 (2022) 196 (1-11).
DOI: 10.3390/jfb13040196
Google Scholar
[17]
Sh. Makatsaria, L. Chkhartishvili, N. Barbakadze, O. Tsagareishvili, Sh. Kekutia, J. Markhulia, V. Mikelashvili, M. Mirzayev, I. Jinikashvili, Sh. Oboladze, R. Chedia, Magnetite-doped nanopowder boron nitride for 10B delivery agent in BNCT, Solid State Sci. 154 (2024) 107614 (1-14).
DOI: 10.1016/j.solidstatesciences.2024.107614
Google Scholar
[18]
M. Blagosklonny, Overcoming limitations of natural anticancer drugs by combining with artificial agents, Trends Pharmacol. Sci. 26 (2005) 77-81.
DOI: 10.1016/j.tips.2004.12.002
Google Scholar
[19]
F. Khorshid, G. Raouf, S. El-Hamidy, G. Al-Amri, H. Alotaibi, T. Kumosani, PMF, cesium and rubidium nanoparticles induce apoptosis in A549 cells, J. Life Sci. 8 (2011) 534-542.
Google Scholar
[20]
N. Mitagvaria, A. Chirakadze, G. Chubinidze, N. Dvali, T. Chichua, N. Khuskivadze, M. Devdariani, L. Gumberidze, N. Kostiuchik, Development, and acute toxicity testing of anticancer drugs based on alkali metal solutions for treatment of non-small cell lung cancer, Bull. Georgian Natl. Acad. Sci. 17 (2) (2023) 142-147.
Google Scholar
[21]
A. Chirakadze, D. Jishiashvili, Z. Buachidze, K. Gorgadze, Z. Shiolashvili, A. Jishiashvili, N. Mitagvaria, I. Lazrishvili, New Approaches to development of new nanomaterials for magnetic hyperthermia of cancer cells and perspectives of combined treatment of cancer in Georgia, J. Low Dimen. Syst. 2 (1) (2018) 8-22.
DOI: 10.3934/matersci.2016.2.470
Google Scholar
[22]
A. Chirakadze, D. Jishiashvili, N. Mitagvaria, I. Lazrishvili, Z. Shiolashvili, A. Jishiadhvili, N. Makhatadze, Z. Buachidze, N. Khuskivadze, Studies of the comparatively low-temperature synthesis and preliminary toxic characteristics of silver doped lanthanum manganite nanoparticles using conventional and microwave heating, In: Proc. Conf. "Modern Trends in Physics", Baku State Univ., Baku, 2019, 47-51.
Google Scholar
[23]
A. Chirakadze, N. Mitagvaria, D. Jishiashvili, M. Devdariani, G. Petriashvili, L. Davlianidze, N. Dvali, K. Chubinidze, A. Jishiashvili, Z. Buachidze, I. Khomeriki, Development and testing of nanoparticles for treatment of cancer cells by Curie temperature controlled magnetic hyperthermia, Bull. Georgian Natl. Acad. Sci. 15 (1) (2021) 91-99.
Google Scholar
[24]
A. Chirakadze, N. Mitagvaria, D. Jishiashvili, G. Petriashvili, N. Dvali, Z. Shiolashvili, K. Chubinidze, N. Makhatadze, A. Jishiashvili, Z. Buachidze, I. Khomeriki, Microwave synthesis, characterization, and testing of acute toxicity of boron nitride nanoparticles by monitoring of behavioral and physiological parameters, Bull. Georgian Natl. Acad. Sci. 15 (2) (2021) 121-126.
DOI: 10.1109/smicnd.2009.5336589
Google Scholar
[25]
Zh. Ouyang, Q. Huang, B. Liu, H. Wu, T. Liu, Y. Liu, Rubidium chloride targets Jnk/p.38-mediated NF-κB activation to attenuate osteoclastogenesis and facilitate osteoblastogenesis, Front. Pharmacol. 10 (2019) 584 (1-12).
DOI: 10.3389/fphar.2019.00584
Google Scholar
[26]
J.D. Oldan, A.D. Femi–Abodunde, M.A. Muhleman, A.H. Khandani, Rubidium uptake in chest tumors on PET/CT, World J. Nucl. Med. 21 (2022) 18-27.
DOI: 10.1055/s-0042-1744195
Google Scholar
[27]
J. Daimari, S.Basumatary, A.K. Deka, Bimetallic nanoparticles from coinage metals (Cu, Ag, Au) and its biomedical applications: A Review, Nano-Str. Nano-Obj. 39 (1) (2024) 101247(1-5).
DOI: 10.1016/j.nanoso.2024.101247
Google Scholar
[28]
M. Karbasi, M. Varzandeh, M. Karbasi, A.I. Mobarakeh, M. Falahati, M.R. Hamblin, Photodynamic therapy based on metal-organic framework in cancer treatment: A comprehensive review of integration strategies for synergistic combination therapies, Nano-Str. Nano-Obj., 40 (4) (2024) 101315 (1-10).
DOI: 10.1016/j.nanoso.2024.101315
Google Scholar