[1]
H. Yu, Z. Yang, F. Li, L. Xu, Y. Sun, Cell-mediated targeting drugs delivery systems, Drug Deliv. 27 (2020) 1425.
DOI: 10.1080/10717544.2020.1831103
Google Scholar
[2]
Q. Ma, J. Cao, Y. Gao, Sh. Han, Y. Liang, T. Zhang, X. Wang, Y. Sun, Microfluidic-mediated nano-drug delivery systems: From fundamentals to fabrication for advanced, Nanoscale, 12 (2020) 15512.
DOI: 10.1039/d0nr02397c
Google Scholar
[3]
O. Afzal, A.S.A. Altamimi, M.S. Nadeem, S.I. Alzarea, W.H. Almalki, A. Tariq, B. Mubeen, B.N. Murtaza, S. Iftikhar, N. Riaz, I. Kazmi, Nanoparticles in drug delivery: From history to therapeutic applications, Nanomater. 12 (2022) 4494.
DOI: 10.3390/nano12244494
Google Scholar
[4]
S. Parveen, R. Misra, S.K. Sahoo, Nanoparticles: A boon to drug delivery, therapeutics, diagnostics, and imaging, Nanomed. 8 (2012) 147.
DOI: 10.1016/j.nano.2011.05.016
Google Scholar
[5]
J. Kumar Patra, G. Das, L. Fernandes Fraceto, E.V. Ramos Campos, M. del Pilar Rodriguez–Torres, L.S. Acosta–Torres, L.A. Diaz–Torres, R. Grillo, M. Kumara Swamy, Sh. Sharma, S. Habtemariam, H.‑S. Shin, Nano-based drug delivery systems: Recent developments and future prospects, J. Nanobiotechnol. 16 (2018) 71.
DOI: 10.1186/s12951-018-0392-8
Google Scholar
[6]
V. Jain, S. Jain, S.C. Mahajan, Nanomedicines based drug delivery systems for anti-cancer targeting and treatment, Curr. Drug Deliv. 12 (2015) 177.
DOI: 10.2174/1567201811666140822112516
Google Scholar
[7]
L.P. Mendes, J. Pan, V.P. Torchilin, Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy, Molecules 22 (2017) 1401.
DOI: 10.3390/molecules22091401
Google Scholar
[8]
L.-P. Wu, M. Ficker, J.B. Christensen, P.N. Trohopoulos, S.M. Moghimi, Dendrimers in medicine: Therapeutic concepts and pharmaceutical challenges, Bioconjug. Chem. 26 (2015) 1198.
DOI: 10.1021/acs.bioconjchem.5b00031
Google Scholar
[9]
A. Top, K.L. Kiick, Multivalent protein polymers with controlled chemical and physical properties, Adv. Drug Deliv. Rev. 62 (2010) 1530.
DOI: 10.1016/j.addr.2010.05.002
Google Scholar
[10]
S. Sim, N.K. Wong, Nanotechnology and its use in imaging and drug delivery (Review), Biomed. Rep. 14 (2021) 42.
Google Scholar
[11]
N. Dixit, M. Glaum, A. Kumar, D.F. Cameron, Biological systems for the delivery of nanoparticles, in: A. Kumar, H.M. Mansour, A. Friedman, E.R. Blough (Eds.), Nanomedicine in Drug Delivery, CRC Press, Boca Raton, 2013, 75.
DOI: 10.1201/b14802
Google Scholar
[12]
X. Huang, P.K. Jain, I.H. El-Sayed, M.A. El-Sayed, Plasmonic photothermal therapy (PPTT) using gold nanoparticles, Lasers Med. Sci. 23 (2008) 217.
DOI: 10.1007/s10103-007-0470-x
Google Scholar
[13]
J. Wang, J. Qiu, A review of organic nanomaterials in photothermal cancer therapy, Can. Res. Front. 2 (2016) 67.
Google Scholar
[14]
A.M. Elhissi, W. Ahmed, I.U. Hassan, V.R. Dhanak, A. D'Emanuele, Carbon nanotubes in cancer therapy and drug delivery, J. Drug Deliv. 2012 (2012) 837327.
DOI: 10.1155/2012/837327
Google Scholar
[15]
F. Zhou, D. Xing, Z. Ou, B. Wu, D.E. Resasco, W.R. Chen, Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes, J. Biomed. Opt. 14 (2009) 021009.
DOI: 10.1117/1.3078803
Google Scholar
[16]
S.A. Maier, Plasmonics: Fundamentals and Applications, Springer, New York, 2007.
Google Scholar
[17]
T.G. Giorgadze, I.G. Khutsishvili, Z.G. Melikishvili, V.G. Bregadze, Silver atoms encapsulated in G4 PAMAM (polyamidoamine) dendrimers as a model for their use in nanomedicine for phototherapy, Eur. Chem. Bull. 9 (2020) 22.
DOI: 10.17628/ecb.2020.9.22-27
Google Scholar
[18]
P. Kesharwani, K. Jain, N. Kumar Jain, Dendrimer as nanocarrier for drug delivery, Prog. Polym. Sci. 39 (2014) 268.
DOI: 10.1016/j.progpolymsci.2013.07.005
Google Scholar
[19]
N. Taghavi Pourianazar, P. Mutlu, U. Gunduz, Bioapplications of poly(amidoamine) (PAMAM) dendrimers in nanomedicine, J. Nanopart. Res. 16 (2014) 2342.
DOI: 10.1007/s11051-014-2342-1
Google Scholar
[20]
R. Kharwade, S. More, A. Warokar, P. Agrawal, N. Mahajan, Starburst PAMAM dendrimers: Synthetic approaches, surface modifications, and biomedical applications, Arabian J. Chem. 13 (2020) 6009.
DOI: 10.1016/j.arabjc.2020.05.002
Google Scholar
[21]
L.J. Fox, R.M. Richardson, W.H. Briscoe, PAMAM dendrimer–cell membrane interactions, Adv. Colloid Interface Sci. 257 (2018) 1.
DOI: 10.1016/j.cis.2018.06.005
Google Scholar
[22]
P.K. Maiti, T. Cuagion, Sh.-T. Lin, W.A. Goddard, Effect of solvent and pH on the structure of PAMAM dendrimers, Macromol. 38 (2005) 979.
DOI: 10.1021/ma049168l
Google Scholar
[23]
A.S. Davidov, Theory of Molecular Excitons, McGraw-Hill Book Co., New York, 1962.
Google Scholar
[24]
V.G. Bregadze, T.G. Giorgadze, Z.G. Melikishvili, DNA and nanophotonics: Original methodological approach, Nanotechnol. Rev. 3 (2014) 445.
DOI: 10.1515/nano.0034.00095
Google Scholar
[25]
V. Renugopalakrishnan, A.V. Lakshminarayanan, V. Sasisekharan, Stereochemistry of nucleic acids and polynucleotides III. Electronic charge distribution, Biopolym. 10 (1971) 1159.
DOI: 10.1002/bip.360100707
Google Scholar