Study of Reduction Process of Silver Ions on G4 PAMAM (Polyamidoamine) Dendrimers with Different Terminal Functional Groups: NH2 and OH

Article Preview

Abstract:

Recently, a major challenge in scientific research in nanomedicine has been effectively delivering medication to the local area of the disease or tumor. This approach aims to maximize clinical benefits while minimizing the side effects of the drug. Additionally, there has been a growing focus in modern medicine on photochemical and photothermal therapy for both malignant and nonmalignant tumors. The main goal of the research was to study the reduction process of silver ions on drug delivery nanoparticle - G4 PAMAM (polyamidoamine) dendrimers with different terminal functional groups, NH2 and OH, using absorption spectroscopy and create new, stable nanosized metalorganic nanocomposites. For the reduction of silver ions, sodium borohydride was used. In the case of G4(NH2) PAMAM dendrimer, the silver nanoparticles are created inside the dendrimer, while in the case of G4(OH) PAMAM dendrimer, the reduction occurs on the surface of the dendrimer. There were determined the adsorption rate constants and the adsorption energy of the silver atom on PAMAM dendrimers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

145-153

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Yu, Z. Yang, F. Li, L. Xu, Y. Sun, Cell-mediated targeting drugs delivery systems, Drug Deliv. 27 (2020) 1425.

DOI: 10.1080/10717544.2020.1831103

Google Scholar

[2] Q. Ma, J. Cao, Y. Gao, Sh. Han, Y. Liang, T. Zhang, X. Wang, Y. Sun, Microfluidic-mediated nano-drug delivery systems: From fundamentals to fabrication for advanced, Nanoscale, 12 (2020) 15512.

DOI: 10.1039/d0nr02397c

Google Scholar

[3] O. Afzal, A.S.A. Altamimi, M.S. Nadeem, S.I. Alzarea, W.H. Almalki, A. Tariq, B. Mubeen, B.N. Murtaza, S. Iftikhar, N. Riaz, I. Kazmi, Nanoparticles in drug delivery: From history to therapeutic applications, Nanomater. 12 (2022) 4494.

DOI: 10.3390/nano12244494

Google Scholar

[4] S. Parveen, R. Misra, S.K. Sahoo, Nanoparticles: A boon to drug delivery, therapeutics, diagnostics, and imaging, Nanomed. 8 (2012) 147.

DOI: 10.1016/j.nano.2011.05.016

Google Scholar

[5] J. Kumar Patra, G. Das, L. Fernandes Fraceto, E.V. Ramos Campos, M. del Pilar Rodriguez–Torres, L.S. Acosta–Torres, L.A. Diaz–Torres, R. Grillo, M. Kumara Swamy, Sh. Sharma, S. Habtemariam, H.‑S. Shin, Nano-based drug delivery systems: Recent developments and future prospects, J. Nanobiotechnol. 16 (2018) 71.

DOI: 10.1186/s12951-018-0392-8

Google Scholar

[6] V. Jain, S. Jain, S.C. Mahajan, Nanomedicines based drug delivery systems for anti-cancer targeting and treatment, Curr. Drug Deliv. 12 (2015) 177.

DOI: 10.2174/1567201811666140822112516

Google Scholar

[7] L.P. Mendes, J. Pan, V.P. Torchilin, Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy, Molecules 22 (2017) 1401.

DOI: 10.3390/molecules22091401

Google Scholar

[8] L.-P. Wu, M. Ficker, J.B. Christensen, P.N. Trohopoulos, S.M. Moghimi, Dendrimers in medicine: Therapeutic concepts and pharmaceutical challenges, Bioconjug. Chem. 26 (2015) 1198.

DOI: 10.1021/acs.bioconjchem.5b00031

Google Scholar

[9] A. Top, K.L. Kiick, Multivalent protein polymers with controlled chemical and physical properties, Adv. Drug Deliv. Rev. 62 (2010) 1530.

DOI: 10.1016/j.addr.2010.05.002

Google Scholar

[10] S. Sim, N.K. Wong, Nanotechnology and its use in imaging and drug delivery (Review), Biomed. Rep. 14 (2021) 42.

Google Scholar

[11] N. Dixit, M. Glaum, A. Kumar, D.F. Cameron, Biological systems for the delivery of nanoparticles, in: A. Kumar, H.M. Mansour, A. Friedman, E.R. Blough (Eds.), Nanomedicine in Drug Delivery, CRC Press, Boca Raton, 2013, 75.

DOI: 10.1201/b14802

Google Scholar

[12] X. Huang, P.K. Jain, I.H. El-Sayed, M.A. El-Sayed, Plasmonic photothermal therapy (PPTT) using gold nanoparticles, Lasers Med. Sci. 23 (2008) 217.

DOI: 10.1007/s10103-007-0470-x

Google Scholar

[13] J. Wang, J. Qiu, A review of organic nanomaterials in photothermal cancer therapy, Can. Res. Front. 2 (2016) 67.

Google Scholar

[14] A.M. Elhissi, W. Ahmed, I.U. Hassan, V.R. Dhanak, A. D'Emanuele, Carbon nanotubes in cancer therapy and drug delivery, J. Drug Deliv. 2012 (2012) 837327.

DOI: 10.1155/2012/837327

Google Scholar

[15] F. Zhou, D. Xing, Z. Ou, B. Wu, D.E. Resasco, W.R. Chen, Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes, J. Biomed. Opt. 14 (2009) 021009.

DOI: 10.1117/1.3078803

Google Scholar

[16] S.A. Maier, Plasmonics: Fundamentals and Applications, Springer, New York, 2007.

Google Scholar

[17] T.G. Giorgadze, I.G. Khutsishvili, Z.G. Melikishvili, V.G. Bregadze, Silver atoms encapsulated in G4 PAMAM (polyamidoamine) dendrimers as a model for their use in nanomedicine for phototherapy, Eur. Chem. Bull. 9 (2020) 22.

DOI: 10.17628/ecb.2020.9.22-27

Google Scholar

[18] P. Kesharwani, K. Jain, N. Kumar Jain, Dendrimer as nanocarrier for drug delivery, Prog. Polym. Sci. 39 (2014) 268.

DOI: 10.1016/j.progpolymsci.2013.07.005

Google Scholar

[19] N. Taghavi Pourianazar, P. Mutlu, U. Gunduz, Bioapplications of poly(amidoamine) (PAMAM) dendrimers in nanomedicine, J. Nanopart. Res. 16 (2014) 2342.

DOI: 10.1007/s11051-014-2342-1

Google Scholar

[20] R. Kharwade, S. More, A. Warokar, P. Agrawal, N. Mahajan, Starburst PAMAM dendrimers: Synthetic approaches, surface modifications, and biomedical applications, Arabian J. Chem. 13 (2020) 6009.

DOI: 10.1016/j.arabjc.2020.05.002

Google Scholar

[21] L.J. Fox, R.M. Richardson, W.H. Briscoe, PAMAM dendrimer–cell membrane interactions, Adv. Colloid Interface Sci. 257 (2018) 1.

DOI: 10.1016/j.cis.2018.06.005

Google Scholar

[22] P.K. Maiti, T. Cuagion, Sh.-T. Lin, W.A. Goddard, Effect of solvent and pH on the structure of PAMAM dendrimers, Macromol. 38 (2005) 979.

DOI: 10.1021/ma049168l

Google Scholar

[23] A.S. Davidov, Theory of Molecular Excitons, McGraw-Hill Book Co., New York, 1962.

Google Scholar

[24] V.G. Bregadze, T.G. Giorgadze, Z.G. Melikishvili, DNA and nanophotonics: Original methodological approach, Nanotechnol. Rev. 3 (2014) 445.

DOI: 10.1515/nano.0034.00095

Google Scholar

[25] V. Renugopalakrishnan, A.V. Lakshminarayanan, V. Sasisekharan, Stereochemistry of nucleic acids and polynucleotides III. Electronic charge distribution, Biopolym. 10 (1971) 1159.

DOI: 10.1002/bip.360100707

Google Scholar