Direct Determination of the Fully Differential Cross Section by the Time-Dependent Wave Function

Article Preview

Abstract:

This paper aims to show that the fully differential ionization cross section when an antiproton collision with a hydrogen atom can be directly expressed as a time-dependent wave function. For the projectile, wave function corresponding to the specific scattering angle was converted by two-dimensional Fourier transform from the wave functions of corresponding to impact parameters. This wave function shows how the ejected electron probability density distribution varies with time. We are shown that the calculation of the fully differential cross section of ionization can be directly determined by the local value of the wave function without the need to calculate the spatial integral for calculating the transition amplitude. It has been shown that the direct determination of the fully differential cross section by this time-dependent wave function is in good agreement with the results of determined the traditional method is by the transition amplitude.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

19-26

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Jones and D. H. Madison, Scaling behavior of the fully differential cross section for ionization of hydrogen atoms by the impact of fast elementary charged particles, Phys. Rev. A 65, 052727 (2002)

DOI: 10.1103/physreva.65.052727

Google Scholar

[2] A. B. Voitkiv and J. Ullrich, Three-body Coulomb dynamics in hydrogen ionization by protons and antiprotons at intermediate collision velocities, Phys. Rev. A 67, 062703 (2003)

DOI: 10.1103/physreva.67.062703

Google Scholar

[3] A. Igarashi, S. Nakazaki, and A. Ohsaki, Ionization of atomic hydrogen by antiproton impact, Phys. Rev. A, Vol 61, 062712 (2000)

DOI: 10.1103/physreva.61.062712

Google Scholar

[4] Xiao-Min Tong, Tsutomu Watanabe, Daiji Kato,and Shunsuke Ohtani. Ionization of atomic hydrogen by antiproton impact: A direct solution of the time-dependent Schrodinger equation .Physical review A, Volume 64, 022711 (2001)

DOI: 10.1103/physreva.64.022711

Google Scholar

[5] M. McGovern, D. Assafrao, J. R. Mohallem, C. T. Whelan, and H. R. J. Walters, Differential and total cross sections for antiproton-impact ionization of atomic hydrogen and helium, Phys. Rev. A, 79, 042707 (2009)

DOI: 10.1103/physreva.79.042707

Google Scholar

[6] M. McGovern, D. Assafrao, J. R. Mohallem, C. T. Whelan, and H. R. J. Walters, Coincidence Studies with Antiprotons,Phys. Rev. A 81, 032708 (2010)

Google Scholar

[7] I. B. Abdurakhmanov, A. S. Kadyrov, I. Bray, and A. T. Stelbovics, Differential ionization in antiproton–hydrogen collisions within the convergent-close-coupling approach,J. Phys. B: At. Mol. Opt. Phys. 44, 165203 (2011)

DOI: 10.1088/0953-4075/44/16/165203

Google Scholar

[8] M. F. Ciappina, T.G. Lee, M. S. Pindzola, and J. Colgan, Nucleus-nucleus effects in differential cross sections for antiproton-impact ionization of H atoms ,Phys. Rev. A 88, 042714 (2013)

DOI: 10.1103/physreva.88.042714

Google Scholar

[9] I. B. Abdurakhmanov, A. S. Kadyrov, and I. Bray, Wave-packet continuum-discretization approach to ion-atom collisions: Nonrearrangement scattering, Phys. Rev. A 94, 022703 (2016)

DOI: 10.1103/physreva.94.022703

Google Scholar

[10] A. I. Bondarev, Y. S. Kozhedub, I. I. Tupitsyn, V. M. Shabaev, G. Plunien, and Th. Stöhlker. Relativistic calculations of differential ionization cross sections: Application to antiproton-hydrogen collisions.Phys. Rev. A 95, 052709 (2017)

DOI: 10.1103/physreva.95.052709

Google Scholar

[11] K.M. Dunseath, J.M Launay, M Terao-Dunseath and L Mouret J. Schwartz interpolation for problems involving the Coulomb potential. Phys. B: At. Mol. Opt. Phys. 35 , 3539–3556 (2002)

DOI: 10.1088/0953-4075/35/16/313

Google Scholar

[12] Peng. Liang-You and Starace. Anthony F, Application of Coulomb wave function discrete variable representation to atomic systems in strong laser fields. J. Chem. Phys. 125, 154311 (2006)

DOI: 10.1063/1.2358351

Google Scholar

[13] Zorigt Gombosuren, Khenmedekh Lochin, Altangoo Ochirbat, Aldarmaa Chuluunbaatar, Direct determination of the fully differential cross section by the time-dependent wave function, arXiv:2311.18490v1 (2023)

Google Scholar

[14] Zorigt Gombosuren1, Aldarmaa Chuluunbaatar, Khenmedekh Lochin, Lkhagva Oidov, Khatanbold Erdenebayar. Antiproton impact ionization of hydrogen atom:Differential cross sections computed by Coulomb wave function discrete variable representation method. Journal of Applied Science and Engineering A. Vol.3, Issue 1, pp.59-70, (2022)

DOI: 10.5564/jasea.v3i1.2477

Google Scholar

[15] Andrey I. Bondarev, Ilya I. Tupitsyn, Ilia A. Maltsev, Yury S. Kozhedub, and Gunter Plunien. Positron creation probabilities in low-energy heavy-ion collisions. Eur.Phys. J.D 69, 110 (2015)

DOI: 10.1140/epjd/e2015-50783-6

Google Scholar

[16] L. D. Landay and E. M. Lifshitz, Quantum Mechanics. Norelativistic Theory, 4th ed , page 53 (1989)

Google Scholar

[17] J. Azuma, N. Toshima, K. Hino, and A. Igarashi, B-spline expansion of scattering equations for ionization of atomic hydrogen by antiproton impact. Phys. Rev. A 64, 062704 (2001)

DOI: 10.1103/physreva.64.062704

Google Scholar

[18] Emil Y Sidky and C D Lin. J. Numerical solution of the time-dependent Schrödinger equation for intermediate-energy collisions of antiprotons with hydrogen. Phys. B: At. Mol. Opt. Phys. 31, 2949–2960 (1998)

Google Scholar

[19] J. C. Wells, D. R. Schultz, P. Gavras and M. S. Pindzola. Numerical Solution of the Time-dependent Schrödinger Equation for Intermediate-Energy Collisions of Antiprotons with Hydrogen,Phys. Rev. A 54 , 593 (1996)

DOI: 10.1103/physreva.54.593

Google Scholar

[20] B. Pons. Ability of monocentric close-coupling expansions to describe ionization in atomic collisions. Phys. Rev. A 63, 012704 (2000)

DOI: 10.1103/physreva.64.019904

Google Scholar

[21] John S. Briggs, Quantum or classical perception : the Imaging Theorem and the ensemble picture, arXiv:1707.05006v2 (2018)

Google Scholar