[1]
G.H. Haertling and C.E. Land, J. Am. Ceram. Soc., 54 [1] (1971), p.1.
Google Scholar
[2]
K. Nashimoto, S. Nakamura, T. Morikawa, H. Moriyama, M. Watanabe, and E. Osakabe, Jpn. J. Appl., 38 (1999), p.5641.
Google Scholar
[3]
K. D. Preston and G. H. Haertling, Appl. Phys. Lett. 60 [23] (1992), p.8.
Google Scholar
[4]
D. H. Reitze, E. Haton, R. Ramesh, S. Etemad, D. E. Leaird, and T. Sands, Appl. Phys. Lett.
Google Scholar
[5]
F. Wang and G. H. Haertling, Appl. Phys. Lett. 63 [13] (1993), p.1730.
Google Scholar
[6]
T. Tani and D. A. Payne, J. Am. Ceram. Soc., 77 [5] (1994), p.1242.
Google Scholar
[7]
S. J. Milne and S. H. Pyke, J. Am. Ceram. Soc., 74 [6] (1991), p.1407.
Google Scholar
[8]
C. J. Brinker and G. W. Scherer, Sol-gel science, Academic press, 1990. Author to whom correspondence should be addressed; e-mail: ishii. masatoshi@jp. fujitsu. com Fax: +81-46-248-6000, http: /www. labs. fujitsu. com/ Fig. 9. EO coefficient as a function of PLZT composition.
Google Scholar
[5] [10] [15] [20] [25] [30] [35] [40] [45] [50] 0 5 10 La (Atom% ) EO coefficient (pm/V) . TE TM Fig. 8. Refractive index changes of PLZT thin films. -5 -4 -3 -2 -1.
Google Scholar
0 10 20 Electric field (MV/m) Refractive index change . 0/52/48 9/65/35 10/65/35 ×10 -3 TM mode.
Google Scholar