Evaluation of a Chitosan Nano-Hybrid Material Containing Silanol Group and Calcium Salt as a Bioactive Bone Graft

Article Preview

Abstract:

A bioactive chitosan-siloxane nano-hybrid material was newly developed and evaluated for the potential application as a bone graft material. The chitosan which can be dissolved in organic solvent was synthesized by the reaction with phtalic anhydride (Ph-Chitosan) and it was then reacted with 3-isocyanatopropyl triethoxysilane (Si-Chitosan) in dimethylformamide. Following this, the Si-Chitosan was hydrolyzed and condensed to yield a hybrid sol-gel material (Si-O-Chitosan). The gelation was carried out for 1 week at ambient condition in a covered Teflon mold with a few pinholes and then dried under vacuum at room temperature for 48 h. The bioactivity of the chitosan nano-hybrid material was evaluated by examining the apatite forming ability in the simulated body fluid (SBF). The surface microstructure and functional groups of the specimen was analyzed by field emission scanning electron microscopy and Fourier transformed infrared spectroscopy, respectively. The crystal phases of the specimen before and after the bioactivity testing were analyzed by thin film X-ray diffractometry. Newly developed chitosan nano-hybrid material showed apatite-forming ability in the SBF within 1 week soaking and this ability was believed to come from the silanol group formed on the surface of Si-O-Chitosan and calcium salt which increased the ionic activity product of apatite in the SBF.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 284-286)

Pages:

765-768

Citation:

Online since:

April 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Rhee S. H., Choi J. Y., Kim H. M.: Biomaterials 23 (2002), p.4915.

Google Scholar

[2] Rhee S. H.: Biomaterials 24 (2003), p.1721.

Google Scholar

[3] Rhee S. H.: J. Biomed. Mater. Res. 67A (2003), p.1131.

Google Scholar

[4] Rhee S. H.: Biomaterials 25 (2004), p.1167.

Google Scholar

[5] Yoo J. J., Rhee S. H.: J. Biomed. Mater. Res. 68A (2004), p.401.

Google Scholar

[6] Rhee S. H., Choi J. Y.: J. Am. Ceram. Soc. 85 (2002), p.1318.

Google Scholar

[7] Rhee S. H., Hwang M. H., Si H. J., Choi J. Y.: Biomaterials 24 (2003), p.901.

Google Scholar

[8] Tsuru K., Ohtsuki C., Osaka A., Iwamoto T., Mackenzie J. D.: J. Mater. Sci. Mater. Med. 8 (1997), p.157.

Google Scholar

[9] Chen Q., Miyaji F., Kokubo T., Nakamura T.: Biomaterials 20 (1999), p.1127.

Google Scholar

[10] Chen Q., Miyata N., Kokubo T., Nakamura T.: J. Biomed Mater. Res. 51 (2000), p.605.

Google Scholar

[11] Chen Q., Miyata N., Kokubo T., Nakamura T.: J. Mater. Sci.: Mater. Med. 12 (2002), p.515.

Google Scholar

[12] Miyata N., Fuke K., Chen Q., Kawashita M., Kokubo T., Nakamura T.: Biomaterials 23 (2002), p.3033.

Google Scholar

[13] Kamitakahara M., Kawashita M., Miyata N., Kokubo T., Nakamura T.: Biomaterials 24 (2003), p.1357.

Google Scholar

[14] Miyata N., Fuke K., Chen Q., Kawashita M., Kokubo T., Nakamura T.: Biomaterials 25 (2004), p.1.

Google Scholar

[15] Rhee S. H., Lee Y. K., Lim B. S., Yoo J. J., Kim H. J.: Biomacromolecules 5 (2004), p.1575.

Google Scholar

[16] Kokubo T., Kushitani H., Sakka S., Kitsugi T., Yamamuro T.: J Biomed Mate Res 24 (1990), p.721.

DOI: 10.1002/jbm.820240607

Google Scholar

[17] Vandel V. P. J., Matthew H. W. T., Desilva S. P., Mayton L., Wu B., Wooley P. H.: J Biomed Mater Res 59 (2002), p.585.

Google Scholar

[18] Lee J. Y., Nam S. H., Im S. Y., Park Y. J., Lee Y. M., Seol Y. J., Chung J. P., Lee S. J.: J Controll Rel 78 (2002), p.187.

Google Scholar

[19] Eugene K., Lee Y. L.: Biomaterials 24 (2003), p.2339.

Google Scholar