Human Osteoclasts Behaviour on Sol-Gel Derived Carbonate Hydroxyapatite Coatings on Anodized Titanium Alloy Substrates

Article Preview

Abstract:

Titanium alloy has been used as a material for orthopaedic implants, however drawbacks still exist. Considerable efforts have been taken to modify the surface structure of the implant material and improve the biological performance. Previously we have demonstrated that biomaterials surface modification has a significant effect on the regulation of osteogenesis. We have investigated the behaviour of human osteoclasts on sol-gel coated carbonated hydroxyapatite on anodized titanium alloy. Osteoclasts cultured on the modified surface were able to attach and spread, exhibiting the characteristic peripheral brush border. Successful differentiation of the monocytes into osteoclasts and their attachment to the coated surface and the formation of resorption-like imprints indicated that carbonate hydroxyapatite (CHAP) coated titanium alloy play a significant role in regulating the functional activity of osteoclasts.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 309-311)

Pages:

709-712

Citation:

Online since:

May 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.L. Darimont, R. Cloots, E. Heinen, L. Seidel, R. Legrand: Biomaterials, 23 (2002), p.2569.

DOI: 10.1016/s0142-9612(01)00392-1

Google Scholar

[2] A. Milev, G.S.K. Kannangara, B. Ben-Nissan: Materials Letters, 23(12) (2003), p. (1960).

Google Scholar

[3] H.C. Glendhill, I.G. Turner, C. Doyle: Biomaterials, 20 (1999), p.315.

Google Scholar

[4] H.W. Kim, H.E. Kim, V. Salih, J.C. Knowles: J Biomed Mater Res, 72B (2004), p.1.

Google Scholar

[5] H. Zreiqat, F.A. Akin, C.R. Howlett, B. Markovic, D. Haynes, S. Lateef, L. Hanley: J of Biomed Mater Res, 64A (2003), p.175.

DOI: 10.1002/jbm.a.10376

Google Scholar

[6] H. Zreiqat, B. Markovic, W.R. Walsh, C.R. Howlett: J Biomed Mater Res, 33 (1996), p.217.

Google Scholar

[7] C.R. Howlett, H. Zreiqat, R. O'Dell, J. Noorman, P. Evans, B.A. Dalton, C. McFarland, J.G. Steele: J of Material Science: Materials in Medicine, 5 (1994), p.715.

Google Scholar

[8] H. Zreiqat, P. Evans, C.R. Howlett: J Biomed Mater Res, 44 (1999), p.389.

Google Scholar

[9] H. Zreiqat, R. Roest, S. Valenzuela, A. Milev, B. Ben-Nissan: Key Engineering Materials, 284286 (2005), p.541.

Google Scholar

[10] R. Roest, A.W. Eberhardt, B.A. Latella, R. Wuhrer, B. Ben-Nissan: Key Engineering Materials, 254-256 (2004), p.455.

DOI: 10.4028/www.scientific.net/kem.254-256.455

Google Scholar

[11] D.R. Haynes, G.J. Atkins, M. Loric, T.N. Crotti, S.M. Geary, D.M. Findlay: Bone, 23 (1999), p.269.

Google Scholar

[12] M. Sato, E.B. Slamovich, T.J. Webster: Biomaterials, 26 (2005), p.349.

Google Scholar

[13] H. Oonishi, L.L. Hench, J. Wilson, F. Sugihara, E. Tsuji, S. Kushitani, H. Iwaki: J of Biomed Mater Res, 44 (1999), p.31 a b a.

DOI: 10.1002/(sici)1097-4636(199901)44:1<31::aid-jbm4>3.0.co;2-9

Google Scholar