Effect of Cooling Rate on the Properties of the Grain Boundary of CaCu3Ti4O12 Ceramic

Article Preview

Abstract:

The cooling rate effect on the grain boundaries of the CaCu3Ti4¬O12 ceramic was investigated in this research. The resistance at the grain boundaries is found to be reduced as the cooling rate rises. The activation energies at the grain boundaries do not change with the cooling rate, suggesting that the conduction mechanism keeps the same in different cooling conditions. There is no significant difference in the permittivity of the samples. The dielectric loss can be lowered by using a smaller cooling rate. These results give clues to comprehend the conductive mechanism of the CCTO ceramic. The variation of the cooling rate may affect the re-oxidation process and cause the changes in electric properties.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 434-435)

Pages:

300-303

Citation:

Online since:

March 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. A. Subramanian, D. Li, N. Duan, et al.: J. Solid State Chem. Vol. 151 (2000), p.323.

Google Scholar

[2] C. C. Homes, T. Vogt, S. M. Shapiro et al.: Science Vol. 293 (2001), p.673.

Google Scholar

[3] T. B. Adams, D. C. Sinclair, and A. R. West: J. Am. Ceram. Soc. Vol. 89 (2006), p.3129.

Google Scholar

[4] Y. -H. Lin, J. Cai, M. Li et al.: Appl. Phys. Lett. Vol. 88 (2006), p.172902.

Google Scholar

[5] T. B. Adams, D. C. Sinclair, and A. R. West: Phys. Rev. B Vol. 73 (2006), p.

Google Scholar

[6] T. B. Adams, D. C. Sinclair, and A. R. West: Adv. Mater. Vol. 14 (2002), p.1321.

Google Scholar

[7] A. P. Ramirez, M. A. Subramanian, M. Gardel et al.: Solid State Commun. Vol. 115 (2000), p.217.

Google Scholar

[8] L. Wu, Y. Zhu, S. Park et al.: Phys. Rev. B Vol. 71 (2005), p.014118.

Google Scholar

[9] D. C. Sinclair, T. B. Adams, F. D. Morrison et al.: Appl. Phys. Lett. Vol. 80 (2002), p.2153.

Google Scholar

[10] T. B. Adams, D. C. Sinclair, and A. R. West: Adv. Mater. Vol. 14 (2002), p.1321.

Google Scholar

[11] S. Y. Chung, I. L. D. Kim, and S. J. L. Kang: Nat. Mater. Vol. 3 (2004), p.774.

Google Scholar

[12] J. Li, M. A. Subramanian, H. D. Rosenfeld et al.: Chem. Mater. Vol. 16 (2004), p.5223.

Google Scholar

[13] J. R. Macdonald: Impedance Spectroscopy (Wiley, New York, USA, 1987).

Google Scholar

[14] T. -T. Fang and H. -K. Shiau: J Am. Ceram. Soc. Vol. 87 (2004), p. (2072).

Google Scholar

[15] T. -T. Fang, L. -T. Mei and H. -F. Ho: Acta Mater. Vol. 54 (2006), p.2867. Fig. 6 The dielectric loss of the CCTO ceramics cooled at different cooling rate.

Google Scholar