Anti-Synchronization of Chaotic System by Sliding Mode Control and Observer

Article Preview

Abstract:

The Anti-synchronization of chaotic systems with uncertainty by sliding mode control is studied. Using the principle of poles assignment method, the switching function is designed to guarantee Anti-synchronization of slide mode with nonlinearity terms. Using exponent hitting condition of sliding mode, a robust anti-synchronization controller is proposed. In contrast to the previous works, sliding mode of this controller is free from the influence of disturbance, and the system has both better robustness and quick tracking. Therefore the computation is simple and the conservation is smaller. Finally, Simulation results verify the effectiveness of the proposed scheme.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 439-440)

Pages:

1247-1252

Citation:

Online since:

June 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Pecora, L.M., Carroll, T. L: Synchronization in chaotic systems, Phys. Rev. Lett. Vol. 64(1990), pp.821-824.

DOI: 10.1103/physrevlett.64.821

Google Scholar

[2] Kocarev, L., Parlitz,U.: General approach for chaotic synchronization with applications to communication, Phys. Rev. Lett. Vol. 74(1995), pp.5038-5031.

DOI: 10.1103/physrevlett.74.5028

Google Scholar

[3] Ma, J., Ying, H.P., Pu, Z.S.: An anti-control scheme for spiral under Lorenz chaotic signal. Chin. Phys. Lett. Vol. 22(2005), pp.1065-1068.

Google Scholar

[4] Corron N.J., Hahs D.W.: A new approach to communi-cations using chaotic signals, IEEE Trans. Circ. Syst. Vol. 44(1998), pp.373-382.

DOI: 10.1109/81.572333

Google Scholar

[5] Yu, H.J., Liu, Y.Z.: Chaotic synchronization based on stability criterion of linear systems, Phys. Lett. Vol. 314(2003, ), pp.292-298.

DOI: 10.1016/s0375-9601(03)00908-3

Google Scholar

[6] Yang, S.S., Juan C.K.: Generalized synchronization in chaotic systems, Chaos Solitons Fractals. 1998, Vol. 9(1998), pp.1703-1704.

DOI: 10.1016/s0960-0779(97)00149-5

Google Scholar

[7] Rosenblum, M.G., Pikovsky, A.S., Kurths. From phase to lag synchronization in coupled chaotic oscillators, Phys. Rev. Lett. Vol. 78(1997), pp.4193-4964.

DOI: 10.1103/physrevlett.78.4193

Google Scholar

[8] Park, E.H., Zaks, M.A., Kurths,J., Phase synchronization in the forced Lorenz system, Phys. Rev. E. Vol. 60(1999), pp.6627-6638.

DOI: 10.1103/physreve.60.6627

Google Scholar

[9] Zhang, Y., Sun, J., Chaotic synchronization and anti-synchronization based on suitable separation. Phys Lett. Vol. 330(2004), pp.442-447.

DOI: 10.1016/j.physleta.2004.08.023

Google Scholar

[10] Kim, C.M., Rim, S., Kye, W.H., Ryu, J.W., Park, Y.J., Anti-synchronization of chaotic oscillators, Phys Lett. Vol. 320(2003), pp.39-49.

DOI: 10.1016/j.physleta.2003.10.051

Google Scholar

[11] Li,C., Liao,X., Anti-synchronization of a class of coupled chaotic systems via linear feedback control, Int. J. Bifurc. Chaos. Vol. 16(1999).

DOI: 10.1142/s0218127406015295

Google Scholar