[1]
Pecora, L.M., Carroll, T. L: Synchronization in chaotic systems, Phys. Rev. Lett. Vol. 64(1990), pp.821-824.
DOI: 10.1103/physrevlett.64.821
Google Scholar
[2]
Kocarev, L., Parlitz,U.: General approach for chaotic synchronization with applications to communication, Phys. Rev. Lett. Vol. 74(1995), pp.5038-5031.
DOI: 10.1103/physrevlett.74.5028
Google Scholar
[3]
Ma, J., Ying, H.P., Pu, Z.S.: An anti-control scheme for spiral under Lorenz chaotic signal. Chin. Phys. Lett. Vol. 22(2005), pp.1065-1068.
Google Scholar
[4]
Corron N.J., Hahs D.W.: A new approach to communi-cations using chaotic signals, IEEE Trans. Circ. Syst. Vol. 44(1998), pp.373-382.
DOI: 10.1109/81.572333
Google Scholar
[5]
Yu, H.J., Liu, Y.Z.: Chaotic synchronization based on stability criterion of linear systems, Phys. Lett. Vol. 314(2003, ), pp.292-298.
DOI: 10.1016/s0375-9601(03)00908-3
Google Scholar
[6]
Yang, S.S., Juan C.K.: Generalized synchronization in chaotic systems, Chaos Solitons Fractals. 1998, Vol. 9(1998), pp.1703-1704.
DOI: 10.1016/s0960-0779(97)00149-5
Google Scholar
[7]
Rosenblum, M.G., Pikovsky, A.S., Kurths. From phase to lag synchronization in coupled chaotic oscillators, Phys. Rev. Lett. Vol. 78(1997), pp.4193-4964.
DOI: 10.1103/physrevlett.78.4193
Google Scholar
[8]
Park, E.H., Zaks, M.A., Kurths,J., Phase synchronization in the forced Lorenz system, Phys. Rev. E. Vol. 60(1999), pp.6627-6638.
DOI: 10.1103/physreve.60.6627
Google Scholar
[9]
Zhang, Y., Sun, J., Chaotic synchronization and anti-synchronization based on suitable separation. Phys Lett. Vol. 330(2004), pp.442-447.
DOI: 10.1016/j.physleta.2004.08.023
Google Scholar
[10]
Kim, C.M., Rim, S., Kye, W.H., Ryu, J.W., Park, Y.J., Anti-synchronization of chaotic oscillators, Phys Lett. Vol. 320(2003), pp.39-49.
DOI: 10.1016/j.physleta.2003.10.051
Google Scholar
[11]
Li,C., Liao,X., Anti-synchronization of a class of coupled chaotic systems via linear feedback control, Int. J. Bifurc. Chaos. Vol. 16(1999).
DOI: 10.1142/s0218127406015295
Google Scholar