Efficient Blind Signature Scheme Based on Modified Generalized Bilinear Inversion

Article Preview

Abstract:

As a special anonymous signature, the blindness of blind signatures makes it play an important role in electronic commerce. In this paper we first propose a novel blind signature scheme from bilinear pairings. Furthermore, we also give a formal proof of security for the proposed schemes in the random oracle model. And we show that the scheme satisfies the two properties of blind signature: blindness and unforgeability. As for efficiency of the scheme, the size of our blind signature is 320 bits, and no pairings operator are required in the blind signing phas and two pairing operators are needed I the verification phase.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 439-440)

Pages:

1265-1270

Citation:

Online since:

June 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Pointcheval and J. Stern, Security arguments for digit signatures and blind signatures, Journal of Cryptology, Vol. 13, No3, pp.361-396, (2000).

DOI: 10.1007/s001450010003

Google Scholar

[2] Z.J. Huang, K.F. Chen and Y. M Wang, Efficient Identity-Based Signatures and Blind Signatures, CANS2005, LNCS 3810, pp.120-133, 2005, springer-verlag, Berlin Heidelberg.

Google Scholar

[3] A. Shamir, Identity-based cryptosystems and signature schemes, In: Advances in Cryptology-Crypto'84, LNCS 196, pp.47-53, 1985, springer-verlag, Berlin Heidelberg.

DOI: 10.1007/3-540-39568-7_5

Google Scholar

[4] D. Boneh, M. Franklin, Identity-based encryption from the Weil Pairing, In: Advances in Cryptology-Crypto 2001, LNCS 2139, pp.213-229, 2001, springer-verlag, Berlin Heidelberg.

DOI: 10.1007/3-540-44647-8_13

Google Scholar

[5] D. Chaum, Blind signature for untraceable payment, in Advances in Cryptology-Crypto'82, 1983, pp.199-203, springer-verlag, Berlin Heidelberg.

DOI: 10.1007/978-1-4757-0602-4_18

Google Scholar

[6] Sherman S.M. Chow, Lucas C.K. Hui, S.M. Yie and K.P. Chow, Two Improved Partially Blind Signature scheme from Bilinear Pairings, ACISP2005, LNCS 3574, pp.316-328, (2005).

DOI: 10.1007/11506157_27

Google Scholar

[7] Jinho Kim, Kwangjo Kim, and Chulsoo Lee. An Efficient and Provably Secure Threshold Blind Signature, ICICS2001, LNCS 2288, pp.318-327, springer-verlag, Berlin Heidelberg.

Google Scholar

[8] Torben P. Pderson, Distributed Provers with Applications to Undeniable Signatures, Advances in Cryptology-Eurocrypt'91, LNCS 547, pp.221-242, springer-verlag, Berlin Heidelberg.

DOI: 10.1007/3-540-46416-6_20

Google Scholar

[9] Boldyreva, Efficient threshold signature, multisignature and blind signature schemes based on the Gap-Diffie-Hellman group signature, PKC2003, LNCS 2139, pp.31-46 , 2003, Springer-Verlag.

DOI: 10.1007/3-540-36288-6_3

Google Scholar

[10] Shuhong Wang, Feng Bao, Robert H. Deng, Cryptanalysis of a Forward Secure Blind Signature Scheme with Provable Security, , ICICS2005, Beijing, China, December 10-13, (2005).

DOI: 10.1007/11602897_5

Google Scholar

[11] Jan Camenisch, Maciej Koprowski, Bodgan Warinschi, Efficient Blind Signatures Without Random Oracles, 4th International Conference, SCN 2004, Amalfi, Italy, pp.134-146, (2004).

DOI: 10.1007/978-3-540-30598-9_10

Google Scholar

[12] C. Dwork and M. Naor, An efficient existentially unforgeable signature scheme and its applications, Crypto'94, LNCS 839, 1994, pp.234-246.

DOI: 10.1007/3-540-48658-5_23

Google Scholar

[13] Fangguo Zhang, Kwangjo Kim , ID-Based Blind Signature and Ring Signature from Pairings , Advances in Cryptology - ASIACRYPT 2002:, pp.533-547, 2002 Springer-Verlag.

DOI: 10.1007/3-540-36178-2_33

Google Scholar

[14] F. Zhang, K. Kim, Efficient ID-based Blind Signature and Proxy signature from Bilinear Pairings, In: Proc. of ACISP 2003, LNCS 2727, pp.312-323, 2003, Springer-verlag.

DOI: 10.1007/3-540-45067-x_27

Google Scholar

[15] C. Schnorr, Security of Blind discrete log signature against interactive attacks, ICICS 2001, LNCS, 2299, pp.1-12, Springer-Verlag.

Google Scholar

[16] Okamoto T. Provably Secure and Practical Identification Schemes and Corresponding Signature Schemes, Crypto'92, LNCS 740, (1992).

DOI: 10.1007/3-540-48071-4_3

Google Scholar

[17] Camenisch J.L., Piveteau J.M., and Stadler M. A. Blind Signatures Based on the Discrete Logarithm Problem, Eurocrypt'94, LNCS 950, (1994).

DOI: 10.1007/bfb0053458

Google Scholar

[18] Abe M and Fujisaki E. How to date blind signatures" Asiacrypt, 96, LNCS, 1136. Springer-Verlag, 1996. pp.244-251.

DOI: 10.1007/bfb0034851

Google Scholar