Forecasting Volatility in Financial Markets

Article Preview

Abstract:

In this paper, we analyze the stock of Tsingtao Brewery Co Ltd for the 8-year period, from July 31, 2001, to September 11, 2009, a total of 2003 trading days. Using the False Nearest Neighbors method, we obtain the embedding dimension m in the k-nearest neighbour Algorithm. In order to investigate the validity of this method, we apply the modified method to the daily adjusted opening values of the Tsingtao Brewery Co Ltd. We find that the prediction of experimental results is more accurate than traditional methods.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 439-440)

Pages:

679-682

Citation:

Online since:

June 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Ana-Maria Fuertes, Marwan Izzeldin, Elena Kalotychou. On forecasting daily stock volatility: The role of intraday information and market conditions, International Journal of Forecasting 25 (2009): 259.

DOI: 10.1016/j.ijforecast.2009.01.006

Google Scholar

[2] Martin Martens, Dick van Dijk, Michiel de Pooter. Forecasting S&P 500 volatility: Long memory, level shifts, leverage effects, day-of-the-week seasonality, and macroeconomic announcements, International Journal of Forecasting 25 (2009): 282.

DOI: 10.1016/j.ijforecast.2009.01.010

Google Scholar

[3] Koopman, S. J., Jungbacker, B., & Hol, E. Forecasting daily variability of the S&P 100 stock index using historical realized and implied volatility measurements. Journal of Empirical Finance, 12 (2005), 445.

DOI: 10.1016/j.jempfin.2004.04.009

Google Scholar

[4] Brailsford, T. J. and R. W. Faff,. An Evaluation of Volatility Forecasting Techniques, Journal of Banking and Finance 20(1996), p.419.

DOI: 10.1016/0378-4266(95)00015-1

Google Scholar

[5] M. Bartolozzi, S. Drod, D.B. Leinweber, J. Speth, A.W. Thomas, Internat. J. Modern Phys. C 16 (2005) 1347.

Google Scholar

[6] S. Drod, F. Grummer, F. Ruf, J. Speth, Physica A 324 (2003) 174.

Google Scholar

[7] J.H. Friedman, F. Baskett, L.J. Shustek, An algorithm for finding nearest neighbors, IEEE Trans. Comput. 24 (1975) 1000.

DOI: 10.1109/t-c.1975.224110

Google Scholar

[8] Cao Liangyue. Practical method for determining the minimum embedding dimension of a scalar time series[J]. Physica D. 110 (1997). 43.

DOI: 10.1016/s0167-2789(97)00118-8

Google Scholar