[1]
Mandelbrot B.B. Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier. J. Fluid Mech. Vol 62(1974), p.331.
DOI: 10.1017/s0022112074000711
Google Scholar
[2]
Xin-tian Zhuang, Xiao-yuan Huang, Yan-li Sha, Research on the fractal structure in the Chinese stock market, Physica A: Statistical and Theoretical Physics, Vol. 333(2004), P. 293.
DOI: 10.1016/j.physa.2003.10.061
Google Scholar
[3]
Enrico Onali, John Goddard, Unifractality and multifractality in the Italian stock market, International Review of Financial Analysis, Vol. 18(2009), P. 154.
DOI: 10.1016/j.irfa.2009.05.001
Google Scholar
[4]
Fraedrich, K. & Larnder, C. Scaling regimes of composite precipitation time series. Tellus Vol. 45A(1993), p.289.
DOI: 10.1034/j.1600-0870.1993.t01-3-00004.x
Google Scholar
[5]
Harris, D., Menabde, M., Seed, A. & Austin, G. Multifractal characterization of precipitation fields with a strong orographic influence. J. Geophys. Res. Vol. 101(1996), p.26405.
DOI: 10.1029/96jd01656
Google Scholar
[6]
Véronique L. Billat, Laurence Mille-Hamard, Yves Meyer, Eva Wesfreid, Detection of changes in the fractal scaling of heart rate and speed in a marathon race, Physica A: Statistical Mechanics and its Applications, Vol. 388(2009), P. 3798.
DOI: 10.1016/j.physa.2009.05.029
Google Scholar
[7]
Hong Z, Keqiang D. Multifractal Analysis of Traffic Flow Time Series. Journal of Hebei University of Engineering Vol. 26(2009), p.109.
Google Scholar
[8]
Takashi Nagatani, Vehicular traffic through a self-similar sequence of traffic lights, Physica A: Statistical Mechanics and its Applications, Vol. 386(2007), P. 381.
DOI: 10.1016/j.physa.2007.07.042
Google Scholar
[9]
Falconer KJ. Fractal Geometry-Mathematical Foundations and Applications. New York: John Wiley & Sons(1990).
Google Scholar