Nano-Surface Modification of Silicon with Ultra-Short Pulse Laser Process

Article Preview

Abstract:

An ultra-short pulse laser process is presented that is based on a photon-induced phonon excitation process for low-temperature nano-surface modification of silicon. The present methodology is based on the concept that the energy required for re-crystallization and activation of the implanted dopants is supplied to the dopant layer via a nonequilibrium adiabatic process induced by ultra-short pulse laser irradiation at room temperature. An ultra-short pulse laser beam with a pulse duration of ~ 100 femtoseconds has been used in the present work for the investigation of surface excitation features via pump-probe reflectivity measurements and for demonstrations of room-temperature re-crystallization and activation of ion-implanted silicon substrates.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

117-122

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] International Technology Roadmap for Semiconductors, 2007 Edition, Front End Processes, (2007).

Google Scholar

[2] A. Usami, M. Ando, M. Tsunekane and T. Wada, IEEE Trans. Electron. Devices Vol. 39 (1992), p.105.

Google Scholar

[3] C.S. Rafferty, G.H. Gilmer, M. Jaraiz, Appl. Phys. Lett. Vol. 68 (1996), p.2395.

Google Scholar

[4] M. Miyao, K. Itoh, M. Tamura, H. Tamura and T. Tokuyama, J. Appl. Phys. Vol. 51 (1980), p.4139.

Google Scholar

[5] M. Miyao, M. Koyanagi, H. Tamura, N. Hashimoto and T. Tokuyama, Jpn. J. Appl. Phys. Vol. 19 (1980), p.129.

Google Scholar

[6] T. Ito, T. Iinuma, A. Murakoshi, H. Akutus, K. Suguro, T. Arikado, K. Okumura, M. Yoshioka, T. Owada, Y. Imaoka, H. Murayama and T. Kusuda, Jpn. J. Appl. Phys. Vol. 41 (2002), p.2394.

DOI: 10.1143/jjap.41.2394

Google Scholar

[7] R. Lindsay, K. Henson, W. Vandervorst, K. Maex, B. J. Pawlak, R. Duffy, R. Surdeanu, P. Stolk, J. A. Kittla, S. Giangrandi, X. Pages and K. van der Jeugd, J. Vac. Sci. Technol. B Vol. 22 (2004), p.306.

DOI: 10.1116/1.1638774

Google Scholar

[8] S.B. Felch, H. Graoui, G. Tsai, A. Mayur, Nucl. Instr. and Meth. in Phys. Res. B Vol. 237 (2005), p.35.

Google Scholar

[9] G. -H. Yon, G. H. Buh, T. -S. Park, S. -J. Hong, Y. G. Shin, U-I. Chung and J. -T. Moon, Jpn. J. Appl. Phys. Vol. 45 (2006), p.2961.

Google Scholar

[10] H.J. Zeiger, J. Vidal, T.K. Cheng, E.P. Ippen, G. Dresselhaus and M.S. Dresselhous, Phys. Rev. B Vol. 45 (1992), p.768.

Google Scholar

[11] A. J. Sabbah and D. M. Riffe, Phys. Rev. B Vol. 66 (2002), p.165217.

Google Scholar

[12] Z. Wu, H. Hong, R. Aburano, P. Zschack, P. Jemian, J. Tischler, H. Chen, D. -A. Luh and T. -C. Chiang, Phys. Rev. B Vol. 59 (1999), p.3283.

DOI: 10.1103/physrevb.59.3283

Google Scholar

[13] G.C. Cho, W. Kütt and H. Kurz, Phys. Rev. Lett. Vol. 65 (1990), p.764.

Google Scholar

[14] H.J. Zeiger, J. Vidal, T.K. Cheng, E.P. Ippen, G. Dresselhaus and M.S. Dresselhous, Phys. Rev. B Vol. 45 (1992), p.768.

Google Scholar

[15] G.A. Garrett, T.F. Albrecht, J.F. Whitaker and R. Martin, Phys. Rev. Lett. Vol. 77 (1996), p.3661.

Google Scholar

[16] H. J. Zeiger, J. Vidal, T.K. Cheng, E.P. Ippen, G. Dresselhaus and M.S. Dresselhous, Phys. Rev. B Vol. 45 (1992), p.768.

Google Scholar

[17] S.B. Felch , H. Graoui, G. Tsai and A. Mayur, Nucl. Instrum. and Meth. in Phys. Res. B Vol. 237 (2005), p.35.

Google Scholar