Resistive Memory Utilizing Ferritin Protein with Nano Particle

Article Preview

Abstract:

This study reports on the controlled single conductive path in ReRAM formed by embedding Pt nanoparticles (Pt NPs) in NiO film. Homogenous Pt NPs produced and placed by ferritin protein produce electric field convergence which leads to the controlled conductive path formation. The ReRAM with Pt NPs shows stable switching behavior. A Pt NP density decrease results in an increase of OFF state resistance and decrease of forming voltage, whereas ON resistance was independent from the Pt NP density, which indicates that a single metal NP in a memory cell will achieve extremely high-on/off resistance ratio, low power operation and stable operation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

92-97

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I. Yamashita, Thin Solid Film 393, 12 (2001).

Google Scholar

[2] S. Kumagai, S. Yoshii, K. Yamada, N. Matsukawa, I. Fujiwara, K. Iwahori, and I. Yamashita, Appl. Phys. Lett. 88, 153103 (2006).

DOI: 10.1063/1.2189566

Google Scholar

[3] A. Miura, Y. Uraoka, T. Fuyuki, S. Kumagai, S. Yoshii, and I. Yamashita, Surf. Sci. 601, L81 (2007).

DOI: 10.1016/j.susc.2007.05.044

Google Scholar

[4] S. Yoshii, S. Kumagai, K. Nishio, A. Kadotani, and I. Yamashita, Appl. Phys. Lett. 95, 133702 (2009).

DOI: 10.1063/1.3236524

Google Scholar

[5] T. Matsui et al, Langmuir 23, 1615 (2007).

Google Scholar

[6] A. Miura, Y. Uraoka, T. Fuyuki, S. Yoshii, and I. Yamashita, J. Appl. Phys. 103, 074503 (2008).

Google Scholar

[7] A. Miura, T. Hikono, T. Matsumura, H. Yano, T. Hatayama, Y. Uraoka, T. Fuyuki, S. Yohii and I. Yamashita, Jpn. J. Appl. Phys. 45, L1 (2006).

DOI: 10.1143/jjap.45.l1

Google Scholar

[8] S. Kumagai, S. Yoshii, N. Matsukawa, K. Nishio, R. Tsukamoto, and I. Yamashita, Appl. Phys. Lett. 94, 083103 (2009).

DOI: 10.1063/1.3085767

Google Scholar

[9] H. Kirimura, Y. Uraoka, T. Fuyuki, M. Okuda, and I. Yamashita, Appl. Phys. Lett. 86, 262106 (2005).

DOI: 10.1063/1.1954872

Google Scholar

[10] M. -J. Lee, S. Han, S. H. Jeon, B. H. Park, B. S. Kang, S. -E. Ahn, K. H. Kim, C. B. Lee, C. J. Kim, I. -K. Yoo, D. H. Seo, X. -S. Li, J. -B. Park, J. -H. Lee, and Y. Park, Nano Lett. 9, 1476 (2009).

DOI: 10.1021/nl803387q

Google Scholar

[11] J. Y. Son, Y. -H. Shin, Appl. Phys. Lett. 92, 222106 (2008).

Google Scholar

[12] R. Waser, R. Dittmann, G. Staikov and K. Szot, Adv. Mater. 21, 2632 (2009).

Google Scholar

[13] W. Guan, S. Long, R. Jia, and M. Liu, Appl. Phys. Lett. 91, 062111 (2007).

Google Scholar

[14] W. Y. Chang, K. J. Cheng, J. M. Tsai, H. J. Chen, F. Chen, M. J. Tsai and Y. C. Lai, Appl. Phys. Lett. 95, 042104 (2009).

Google Scholar

[15] K. Iwahori, K. Yoshizawa, M. Muraoka, and I. Yamashita, Inorg. Chem. 44, 6393 (2005).

Google Scholar

[16] Eberhardt W, Fayet P, Cox DM, Fu Z, Kaldor A, Sherwood R, Sondericker D (1990) Phys Rev Lett 64: 780.

DOI: 10.1103/physrevlett.64.780

Google Scholar

[17] J.J. Senkevich, G. -R. Yang and T. -M. Lu, Colloids Surf. A: Physicochem. Eng. Asp. 207 (2002), p.139.

Google Scholar

[18] Sen F, Gokagac G, J. Phys. Chem. C 2007, 111 (15) 5715-5720.

Google Scholar