Novel Source Heterojunction Structures with Relaxed-/Strained-Layers for Quasi-Ballistic CMOS Transistors

Article Preview

Abstract:

We have studied new abrupt-source-relaxed/strained semiconductor-heterojunction structures for quasi-ballistic complementary-metal-oxide-semiconductor (CMOS) devices, by locally controlling the strain of a single strained semiconductor. Appling O+ ion implantation recoil energy to the strained semiconductor/buried oxide interface, Raman analysis of the strained layers indicates that we have successfully relaxed both strained-Si-on-insulator (SSOI) substrates for n-MOS and SiGe-on-insulator (SGOI) substrates for p-MOS without poly crystallizing the semiconductor layers, by optimizing O+ ion implantation conditions. As a result, it is considered that the source conduction and valence band offsets EC and EV can be realized by the energy difference in the source Si/channel-strained Si and the source-relaxed SiGe/channel-strained SiGe layers, respectively. The device simulator, considering the tunneling effects at the source heterojunction, shows that the transconductance of sub-10 nm source heterojunction MOS transistors (SHOT) continues to increase with increasing EC. Therefore, SHOT structures with the novel source heterojunction are very promising for future quasi-ballistic CMOS devices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

72-78

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] ITRS 2008 Roadmap: Information on http: /www. itrs. net/Links/2008ITRS/Home2008. htm.

Google Scholar

[2] R. Clerc, P. Palestri, and L. Selmi: IEEE Trans. Electron Devices Vol. 53 (2006), p.1634.

Google Scholar

[3] K. Natori: J. Appl. Phys. Vol. 76 (1994), p.4879.

Google Scholar

[4] M. Lundstrom and Z. Ren: IEEE Trans. Electron Devices Vol. 49 (2002), p.133.

Google Scholar

[5] S. Takagi: Symp. VLSI Tech. Dig. (2003), p.115.

Google Scholar

[6] A. F. J. Levi, R. N. Nottenburg, Y. K. Chen, and M. B. Panish: Physics Today Vol. 43 (1990), p.58.

Google Scholar

[7] A. Kinoshita, C. Tanaka, K. Uchida, and J. Koga : Symp. VLSI Tech. Dig. (2005), p.158.

Google Scholar

[8] P. M. Asbeck, M. F. Chang, K. C. Wang, D. L. Miller, G. J. Sullivan, N. H. Sheng, E. Sovero, and J. A. Higgins : IEEE Trans. Electron Devices Vol. 34 (1987), p.2571.

DOI: 10.1109/t-ed.1987.23356

Google Scholar

[9] S. S. Iyer, G. L. Patton, S. S. Delage, S. Tiwari, and J. M. C. Stork : IEDM Tech. Dig. (1987), p.874.

Google Scholar

[10] T. Mizuno, N. Sugiyama, T. Tezuka, Y. Moriyama, S. Nakaharai, T. Maeda, and S. Takagi: IEEE Trans. Electron Devices Vol. 52 (2005), p.2690.

DOI: 10.1109/ted.2005.843894

Google Scholar

[11] T. Mizuno, Y. Moriyama, T. Tezuka, N. Sugiyama, and S. Takagi: Symp. VLSI Tech. Dig. (2008), p.22.

Google Scholar

[12] T. Mizuno, T. Irisawa, and S. Takagi: IEEE Trans. Electron Devices Vol. 54 (2007), p.2598.

Google Scholar

[13] T. Mizuno, N. Mizoguchi, K. Tanimoto, T. Yamauchi, T. Sameshima, and T. Tezuka: Jpn. J. Appl. Phys. Vol. 49 (2010), p. 04DC13.

Google Scholar

[14] C. K. Maiti: Strained silicon heterostructures, (The Institution of Electrical Engineers, London 2001).

Google Scholar

[15] J.F. Ziegler: Information on http: /www. srim. org.

Google Scholar

[16] M. Bruel, B. Aspar, and A. J. Auberton-Hervé: Jpn. J. Appl. Phys. Vol. 36 (1997), p.1636.

Google Scholar

[17] T. Tezuka, N. Sugiyama, T. Mizuno, M. Suzuki, and S. Takagi: Jpn. J. Appl. Phys. Vol. 40 (2001), p.2866.

Google Scholar

[18] U. Gösele and Q. -Y. Tang: Annu. Rev. Mater. Sci. Vol. 28 (1998), p.215.

Google Scholar

[19] S. H. Christiansen: Proc. IEEE Vol. 94 (2006), p. (2060).

Google Scholar

[20] Information on http: /www. silvaco. com.

Google Scholar

[21] G. Curatola, G. Iannaccone, and G. Fiori: Proc. SISPAD (2004), p.275.

Google Scholar