Nanosize Electronics Material Analysis by Local Quantities Based on the Rigged QED Theory

Article Preview

Abstract:

In this article, we propose two analysis method using novel local quantities. One method is related to the dynamics of electron spin. This is described by novel quantities, the spin torque and the zeta force. These quantities govern the dynamics of the spin of electrons, and hence can clarify the essential description of the dynamics of electron spin. The other method is related to the conductivity of nanosize materials. For this method, we introduce external and internal local conductivities. A microscopic viewpoint is important for the analysis of nanosize material. As a first step, we show the validity and usefulness of our methods. The zeta force clarifies how the local torque works on the electron spin in molecules. The external and internal local conductivities show how electrons pass through nanosize materials and how electrons are locally accelerated in the materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

66-71

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] For example see, D.C. Ralph and M.D. Stiles: J. Magn. and Magn. Mater. Vol. 320 (2008), p.1190.

Google Scholar

[2] A. Tachibana: J. Mol. Model. Vol. 11 (2005) p.301.

Google Scholar

[3] A. Tachibana: J. Mol. Struct.: THEOCHEM Vol. 943 (2010), p.138.

Google Scholar

[4] M. Senami, K. Ichikawa, K. Doi, P. Szarek, K. Nakamura and A. Tachibana: Molecular Regional DFT program package, ver. 3 (Tachibana Lab., Kyoto University, Kyoto, 2008).

Google Scholar

[5] S.D. Suk, S. -Y. Lee, S. -M. Kim, E. -J. Yoon, M. -S. Kim, M. Li, C.W. Oh, K.H. Yeo, S.H. Kim, D. -S. Shin, K. -H. Lee, H.S. Park, J.N. Han, C.J. Park, J. -B. Park, D. -W. Kim, D. Park and B. -I. Ryu: Tech. Dig. - Int. Electron Devices Meet. (2005).

DOI: 10.1109/iedm.2005.1609453

Google Scholar

[6] H. Lee, L. -E. Yu, S. -W. Ryu, J. -W. Han, K. Jeon, D. -Y. Jang, K. -H. Kim, J. Lee, J. -H. Kim, S. Jeon, G. Lee, J. Oh, Y. Park, W. Bae, H. Lee, J. Yang, J. Yoo, S. Kim and Y. -K. Choi: Tech. Dig. VLSI Symp (2006), p.58.

DOI: 10.1109/vlsit.2006.1705215

Google Scholar

[7] A. Tachibana: Theor. Chem. Acc. Vol. 102 (1999), p.188.

Google Scholar

[8] A. Tachibana: J. Chem. Phys. Vol. 115 (2001), p.3497.

Google Scholar

[9] A. Tachibana: Int. J. Quantum Chem. Vol. 57 (1996), p.423.

Google Scholar

[10] A. Tachibana: Int. J. Quantum Chem. Vol. 100 (2004), p.981.

Google Scholar

[11] A. Tachibana: Int. J. Quantum Chem. Quantum Chem. Symp. Vol. 21 (1987), p.181.

Google Scholar

[12] P. Szarek, Y. Sueda and A. Tachibana: J. Chem. Phys. Vol. 129 (2008), 94102.

Google Scholar

[13] M. Senami, J. Nishikawa, T. Hara and A. Tachibana: J. Phys. Soc. Jpn., Vol. 79 (2010), 084302.

Google Scholar