First-Principles Calculations of the Dielectric Constant for the GeO2 Films

Article Preview

Abstract:

Dielectric properties of α-quartz and rutile-GeO2 thin-films are investigated using first-principles ground-state calculations in external electric fields. The optical and the static dielectric constants inside the films have nearly-constant values, corresponding to their bulk values, while only at the topmost surface layer the dielectric constants decrease distinctly. It has been found that the dielectric constant for the rutile-GeO2 is larger than that for the α-quartz one, which stems from the larger ionic character of the Ge-O bond for the rutile phase.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

60-65

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Prabhakaran, F. Maeda, Y. Watanabe and T. Ogino: Thin Solid Films Vol. 369 (2000), p.289.

Google Scholar

[2] K. Prabhakaran and T. Ogino: Surf. Sci. Vol. 325 (1995), p.263.

Google Scholar

[3] H. Matsubara, T. Sasada, M. Takenaka and S. Takagi: Appl. Phys. Lett. Vol. 93 (2008), p.032104.

Google Scholar

[4] T. Sasada, Y. Nakakita, M. Takenaka and S. Takagi: J. Appl. Phys. Vol. 106 (2009), p.073716.

Google Scholar

[5] J. Nakamura, S. Ishihara, A. Natori, T. Shimizu and K. Natori: J. Appl. Phys. Vol. 99 (2006), p.054309.

Google Scholar

[6] J. Nakamura and A. Natori: Appl. Phys. Lett. Vol. 89 (2006), p.053118.

Google Scholar

[7] S. Wakui, J. Nakamura and A. Natori: J. Vac. Sci. Technol. B Vol. 26 (2008), p.1579.

Google Scholar

[8] S. Wakui, J. Nakamura and A. Natori: J. Vac. Sci. Technol. B Vol. 27 (2009), p. (2020).

Google Scholar

[9] M. Bockstedte, A. Kley, J. Neugebauer and M. Scheffler: Comput. Phys. Commun. Vol. 107 (1997), p.187.

Google Scholar

[10] X. Gonze, B. Amadon, P. -M. Anglade, J. -M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Cote, T. Deutsch, L. Genovese, Ph. Ghosez, M. Giantomassi, S. Goedecker, D. R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, M. J. T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G. -M. Rignanese, D. Sangalli, R. Shaltaf, M. Torrent, M. J. Verstraete, G. Zerah and J. W. Zwanziger: Comput. Phys. Commun. Vol. 180 (2009).

DOI: 10.1016/j.cpc.2009.07.007

Google Scholar

[11] P. Hohenberg and W. Kohn: Phys. Rev. Vol. 136 (1964), p. B864.

Google Scholar

[12] W. Kohn and L. J. Sham: Phys. Rev. Vol. 140 (1965), p. A1133.

Google Scholar

[13] N. Troullier and J. L. Martins: Phys. Rev. B Vol. 43 (1993), p. (1993).

Google Scholar

[14] J. P. Perdew and Y. Wang: Phys. Rev. B Vol. 45 (1992), p.13244.

Google Scholar

[15] J. P. Perdew, K. Burke and M. Ernzerhof: Phys. Rev. Lett. Vol. 77 (1996), p.3865.

Google Scholar

[16] S. Kawasaki, O. Ohtaka and T. Yamanaka: Phys. Chem. Miner. Vol. 20 (1994), p.531.

Google Scholar

[17] J. D. Jorgensen: J. Appl. Phys. Vol. 49 (1978), p.5473.

Google Scholar

[18] T. Yamanaka and K. Ogata: J. Appl. Crystallogr. Vol. 24 (1991), p.111.

Google Scholar

[19] C. Sevik and C. Bulutay: J. Mater. Sci. Vol. 42 (2007), p.6555.

Google Scholar

[20] D. M. Christie and J. R. Chelikowsky: Phys. Rev. B Vol. 62 (2000), p.14703.

Google Scholar

[21] N. M. Ravindra, R. A. Weeks and D. L. Kinser: Phys. Rev. B Vol. 36 (1987), p.6132.

Google Scholar

[22] M. Stapelbroek and B. D. Evans: Solid State Commun. Vol. 25 (1978), p.959.

Google Scholar

[23] D. R. Hamann: Phys. Rev. Lett. Vol. 76 (1996), p.660.

Google Scholar

[24] S. Wakui, J. Nakamura and A. Natori: J. Vac. Sci. Technol. B Vol. 24 (2006), p. (1992).

Google Scholar