Li2CO3 – Al2O3 Composite Solid Electrolytes Prepared by Sol Gel Method

Article Preview

Abstract:

Composite solid electrolytes in the system (1-x)Li2CO3-xAl2O3, where x = 0.1–0.7 were prepared by sol gel method using lithium carbonate and aluminum oxide precursors in ethanol. The gels obtained due to the addition of citric acid were calcined at 80 and 100 oC. Their structural, thermodynamic and electrical properties were investigated by X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and impedance spectroscopy. The results indicated that interface phases of crystalline and amorphous exist in this composite system of (1-x)Li2CO3-xAl2O3. The presence of the interface phases are due to the chemical and physical interactions between both crystalline Li2CO3 and Al2O3. The Arrhenius plot of the composite system showed non-linear curves and reached maximum values of ∼10−4 - 10−5 S cm-1 at 150 -180 °C. Based on the results of this study, it can be concluded that the sol gel method used in the preparation of the composite system, has an important role to crystal morphology changes that results in high ionic conductivity.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 471-472)

Pages:

379-384

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Yamada, I. Moriguchi and T. Kudo: Solid State Ionics Vol. 176 (2000), p.945.

Google Scholar

[2] K.S. Alber and J.A. Cox: Mikrochim. Acta 127 (1997), p.131.

Google Scholar

[3] P. Muralidharan, I. Prakash, M. Venkateswarlu and N. Satyanarayana in: NSTI-Nanotech, www. nsti. org, ISBN 0-9728422-9-2 Vol. 3 (2004).

Google Scholar

[4] L.J. Fu, H. Liu, C. Li, Y.P. Wu, E. Rahm, R. Holze and H.Q. Wu: Materials Science Vol. 50 (2005), p.881.

Google Scholar

[5] N.F. Uvarov and P. Vanek: Journal of Materials Synthesis and Processing Vol. 8 (2000), p.319.

Google Scholar

[6] N.F. Uvarov et al.: Solid State Ionics Vol. 90 (1996), p.201.

Google Scholar

[7] G.V. Lavrova, V.G. Ponomareva and N.F. Uvarov: Solid State Ionics Vol. 136-137 (2000), p.1285.

Google Scholar

[8] N.F. Uvarov, P. Vanek, M. Savinov, V. Zelezny, J. Studnicka and J. Petzelt: Solid State Ionics Vol. 127 (2000), p.253.

Google Scholar

[9] K. Tadanaga, K. Imai, M. Tatsumisago and T. Minami: Journal of Electrochem. Soc. Vol. 147 (2000), p.4061.

Google Scholar

[10] V.K. Deshpande and K. Singh: Solid State Ionics Vol. 6 (1982), p.151.

Google Scholar

[11] F. Oksuzomer, S.N. Koc, I. Boz and M.A. Gurkaynak: Materials Research Bulletin Vol. 39 (2004), p.715.

DOI: 10.1016/j.materresbull.2003.10.022

Google Scholar

[12] S.W. Kwon and S.B. Park: Journal of Nuclear Materials Vol. 246 (1997), p.131.

Google Scholar

[13] M. Chatterjee and M.K. Naskar: Journal of Materials Science Letters Vol. 22 (2003), p.1747.

Google Scholar

[14] R.M. Biefield and R.T. Johnson: Journals of Solid State Chemistry Vol. 19 (1979) p.393.

Google Scholar

[15] N.F. Uvarov, E.F. Hairetdinov and I.V. Skobelev.: Solid State ionics Vol. 86-88 (1996), p.577.

DOI: 10.1016/0167-2738(96)00208-1

Google Scholar

[16] S. Hashimoto et. al.: Material Research Bulletin Vol. 44, Issue 1 (2009), p.70.

Google Scholar

[17] R.C. Agrawal and R.K. Gupta: Journal of Material Science Vol. 34 (1999), p.1131.

Google Scholar