A Monolithic MEMS Accelerometer Process

Article Preview

Abstract:

A monolithic MEMS accelerometer process was established. This process successfully combines our standard BiCMOS technology and MEMS surface micromachining technique. The acceleration sensing element is a kind of comb-finger structure which is built by polysilicon surface micromachining technique. The polysilicon structure is designed to form two capacitors for acceleration sensing. The external acceleration will cause the value of two capacitors to vary in different direction. That means one reduces if the other increases. It was integrated with the signal conditioning circuit. In a single die, the active devices including vertical NPN, lateral PNP, PMOS and passive devices such as capacitors, resistors were fabricated which was followed by the steps to form the acceleration sensing structure. The experiment indicates that the fabricated circuit has the function of sensing capacitive variation and with a scale factor of 100mV/g.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

70-74

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. K. Fedder: MEMS FABRICATION (International Test Conference, 2003).

Google Scholar

[2] J. A. Plaza, H. Chen, J. Esteve, E. loraTamayo. New bulk accelerometer for triaxial detection. Sens. Actuators. Vol. 66(1998), p.105–108.

DOI: 10.1016/s0924-4247(97)01735-4

Google Scholar

[3] J. A. Plaza, J. Esteve, E. loraTamayo. Simple technology for bulk Accelerometer based on bond and etch back silicon on insulator wafers. Sens. Actuators. Vol. 68(1998), p.299–302.

DOI: 10.1016/s0924-4247(98)00022-3

Google Scholar

[4] J. A. Plaza, M. A. Benitez, J. Esteve, E. loraTamayo. New FET accelerometer based on surface micromachining. Sens. Actuators. Vol. 61(1997), p.342–345.

DOI: 10.1016/s0924-4247(97)80285-3

Google Scholar

[5] J. M. Bustillo, R. T. Howe and R. S. Muller. Surface Micromachining for Microelectromechanical Systems. PROCEEDINGS OF THE IEEE. Vol. 86(1998), No. 8.

Google Scholar

[6] C. Hierold, A. Hildebrandt, U. Naher et al. A pure CMOS surface-micromachined integrated accelerometer. Sens. Actuators. Vol. 68(1998), p.299–302.

DOI: 10.1109/memsys.1996.493849

Google Scholar

[7] K. Okada. Tri-axial piezoelectric accelerometer. (Tech. Digest, 8th Int. Conf. Solid-state Sensors and Actuators, Sweden 1995).

Google Scholar

[8] S. Kal, S. Das, D. K. Maurya, K. Biswas et al. CMOS compatible bulk micromachined silicon piezoresistive accelero- meter with low off-axis sensitivity. Microelec- tronics Journal. Vol. 37(2006), p.22–30.

DOI: 10.1016/j.mejo.2005.06.020

Google Scholar

[9] J. Chae, H. Kulah and K. Najafi. A Monolithic Three-Axis Micro-g Micromach- ined Silicon Capacitive Accelerometer. Journal of Microelectromechanical systems. Vol. 14(2005), No. 2.

DOI: 10.1109/jmems.2004.839347

Google Scholar

[10] A. Wung, R. V. Park, K. J. Rebello and G. K. Fedder. TRI-AXIAL HIGH-G CMOS-MEMS CAPACITIVE ACCELERO- METER ARRAY(MEMS 2008, Tucson, USA 2008).

DOI: 10.1109/memsys.2008.4443796

Google Scholar

[11] A. M. hung, J. Jones, E. Czyzewska, J. Chen and B. Woods. Micromachined accelerometer based on convection heat transfer(IEEE, 1998).

Google Scholar