Effect of NH3 Atmosphere on Preparation of Al2O3-AlN Composite Film by Laser CVD

Article Preview

Abstract:

Al2O3-AlN composite film was first prepared by laser chemical vapor deposition (laser CVD) using aluminum acetylacetonate (Al(acac)3) and ammonia (NH3) as source materials. The effects of NH3 on the crystal phase, composition and microstructure were investigated. The crystal phase changed from α-Al2O3 to AlN gradually with increasing the mole ratio of NH3 to Ar. Al2O3-AlN composite film was obtained at NH3/Ar ratio ranged from 0.09 to 0.16 (Tdep = 862–887 K), and AlN granular grains were embedded in between α-Al2O3 polyhedral grains.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

172-176

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Lux, C. Colombier, H. Altena and K. Stjernberg: Thin Solid Films Vol. 138 (1986), p.49.

DOI: 10.1016/0040-6090(86)90214-2

Google Scholar

[2] S. Ruppi and A. Larsson: Thin Solid Films Vol. 388 (2001), p.50.

Google Scholar

[3] R. Connelly, A.K. Pattanaik, V.K. Sarin: Int. J. Refract. Met. Hard Mater Vol. 23 (2005), p.317.

Google Scholar

[4] H. Yang, W. Luan and S. -T. Tu: Mater. Trans. Vol. 47 (2006), p.1649.

Google Scholar

[5] F.Y.C. Boey, X.L. Song, Z.Y. Gu and A. Tok: J. Mater. Process. Technol. Vol. 89-90 (1999), p.478.

Google Scholar

[6] F.Y.C. Boey, L. Sun, X. Song and K.A. Khor: J. Mater. Sci.: Mater. Electron. Vol. 10 (1999), p.455.

Google Scholar

[7] L.H. Cao, K.A. Khor, L. Fu and F. Boey: J. Mater. Process. Technol. Vol. 89-90 (1999), p.392.

Google Scholar

[8] Y.W. Kim, H.C. Park, Y.B. Lee, K.D. Oh and R. Stevens: J. Eur. Ceram. Soc. Vol. 21 (2001), p.2383.

Google Scholar

[9] T. Watanabe, M. Kondo, T. Nagasaka, A. Sagara: Proceedings of the 7th General Scientific Assembly of the Asia Plasma and Fusion Association in 2009 (APFA2009) and Asia-Pacific Plasma Theory Conference in 2009 (APPTC2009), Japan, (2010), p.342.

Google Scholar

[10] I. Kimura, N. Hotta, M. Ishii and M. Tanaka: J. Mater. Sci. Vol. 26 (1991), p.258.

Google Scholar

[11] Q. Zheng and R. Reddy: Metall. Mater. Trans. B Vol. 34 (2003), p.793.

Google Scholar

[12] A. Devi, S.A. Shivashankar and A.G. Samuelson: J. de Phys. IV Vol. 12 (2002), p.139.

Google Scholar

[13] C. Pflitsch, A. Muhsin, U. Bergmann and B. Atakan: Surf. Coat. Technol. Vol. 201 (2006), p.73.

Google Scholar

[14] T. Maruyama and S. Arai: Appl. Phys. Lett. Vol. 60 (1992), p.322.

Google Scholar

[15] Y. You, A. Ito, R. Tu and T. Goto: Appl. Surf. Sci. Vol. 256 (2010), p.3906.

Google Scholar

[16] A. Ito, H. Kadokura, T. Kimura and T. Goto: J. Alloys Compd. Vol. 489 (2010), p.469.

Google Scholar

[17] M.P. Singh and S.A. Shivashankar: Surf. Coat. Technol. Vol. 161 (2002), p.135.

Google Scholar

[18] R. Leland, B. Ronald, M. Erik, A. Gregory and S. Gina: Surf. Interface Anal. Vol. 40 (2008), p.1254.

Google Scholar

[19] F. Martin and P. Muralt: Appl. Phys. Lett. Vol. 88 (2006), p.242506.

Google Scholar

[20] H. Liu, D.C. Bertolet and J.W. Rogers Jr: Surf. Sci. Vol. 320 (1994), p.145.

Google Scholar

[21] A.J. Noreika and D.W. Ing: J. Appl. Phys. Vol. 39 (1968), p.5578.

Google Scholar

[22] T. Goto, J. Tsuneyoshi, K. Kaya and T. Hirai: J. Mater. Sci. Vol. 27 (1992), p.247.

Google Scholar