Correlation between Structural Properties and In Vivo Biocompatibility of Alumina/Zirconia Bioceramics

Article Preview

Abstract:

The aim of our study is the characterization and comparison of structural properties of two novel alumina/zirconia ceramics prepared by Spark Plasma Sintering and biocompatibility evaluation by using an animal model (Wistar rats). SEM, XRD and FTIR spectroscopic results are reported for structural characteristics. In vivo tests demonstrated the biocompatibility and osseointegration of the composites by complementary SEM and histological analysis of the defects in rat femur respectively the connective tissue.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 493-494)

Pages:

1-6

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Ben Nissan, A. H. Choi, R. Cordingley in Bioceramics and their clinical applications, T. Kokubo ed. Woodhead Publishing (2008).

Google Scholar

[2] P. Merkert in Next generation ceramic bearings, Bioceramics in Joint Arthroplasty, H. Zippel & M. Dietrich eds. Steinkopff- Verlag, Damstadt (2003).

DOI: 10.1007/978-3-642-85763-8_17

Google Scholar

[3] L. Hench, J. Polak, Third generation biomedical materials, Science 295 (2002) 1014-1017.

DOI: 10.1126/science.1067404

Google Scholar

[4] O. Roualdes, M. -E. Duclos, D. Guttknecht, L. Frappart, J. Chevalier, D. J. Hartmann, In vitro and in vivo evaluation of an alumina-zirconia composite for arthroplasty applications, Biomaterials 31 (2010) (2043).

DOI: 10.1016/j.biomaterials.2009.11.107

Google Scholar

[5] G. Pezzotti, M. C. Munisso, A. A. Porporati, K. Lessnau, On the role of oxygen vacancies and lattice strain in the tetragonal to monoclinic transformation in alumina/zirconia composites and improved environmental stability, Biomaterials 31 (2010).

DOI: 10.1016/j.biomaterials.2010.05.035

Google Scholar

[6] J. Chevalier, What future for zirconia as a biomaterial? Biomaterials 27(2006) 535-543.

DOI: 10.1016/j.biomaterials.2005.07.034

Google Scholar

[7] N. R. Silva, I. Sailer, Y. Zhang, P. G. Coelho, P. C. Guess, A. Zembic, R. Kohal, Performance of zirconia for dental healthcare, Materials (2010) 863-896, doi: 10. 3390/ma. 3020863.

DOI: 10.3390/ma3020863

Google Scholar

[8] M. Navarro, A. Michiardi, O. Castano, J.A. Planell, Biomaterials in orthopedics, J. R. Soc. Interface 5 (2008)1137.

Google Scholar

[9] R. Z. LeGeros, R. G. Craig, Strategies to affect bone remodeling: osteointegration, J. Bone Miner. Res. 8, 2 (1993) S583-596.

DOI: 10.1002/jbmr.5650081328

Google Scholar

[10] T. Ogawa, S. Ozawa, J. H. Shih, K. H. Ryu, C. Sukotjo, J. M. Yang, I. Nishimura, Biomechanical evaluation of osseous implants having different surface topographies in rats, J. Dent. Res. 79, 11 (2000) 1857.

DOI: 10.1177/00220345000790110701

Google Scholar

[11] A. Taavoni-Gilan, E. Taheri-Nassaj, H. Akhondi, J. Non-Cryst. Solids, 355 (2009)311.

DOI: 10.1016/j.jnoncrysol.2008.11.012

Google Scholar

[12] M. Dixit, P.K. Kulkarni, R.P. Selvam, A.G. Kini, H.G. Shivakumar, Am. J. Drug Disco. Drev. 1 (3) (2011)188-199.

Google Scholar

[13] S. Simon, Spectroscopic characterization of crystalline phases development from amorphous precursors, JOAM 5, 1 (2003) 147-152.

Google Scholar

[14] V. Simon, D. Eniu, A. Gritco, S. Simon, Thermal and spectroscopic investigation of sol-gel derived aluminosilicate bioglass matrices, JOAM 9, 11 (2007) 3368-3371.

Google Scholar

[15] T. Masuda, P. K. Yliheikkila, D. A. Felton, L. F. Cooper, Generalizations regarding the process and phenomenon of osseointegration. In vivo studies, Int. J. Oral Macillofac. Implants 13(1998) 17-29.

Google Scholar