[1]
J. Yao, H. Wu, Y. Ruan, J. Guan, A. Wang, H. Li, Reservoir and barrier effects of ABC block copolymer micelle in hydroxyapatite mineralization control, Polymer 52 (2011) 793-803.
DOI: 10.1016/j.polymer.2010.12.017
Google Scholar
[2]
Y, Li, D., Li, Z. Xu, Synthesis of hydroxyapatite nanorods assisted Pluronics, J. Mater. Sci. 44 (2009) 1258-1263.
DOI: 10.1007/s10853-008-3239-0
Google Scholar
[3]
H. Li, C. -R. Zhou, M. -Y. Zhu, J. H. Tian, J. H. Rong, Preparation and Characterization of Homogeneous Hydroxyapatite/Chitosan Composite Scaffolds via In-Situ Hydration, J. Biomater. Nanobiotech. 1 (2010) 42-49.
DOI: 10.4236/jbnb.2010.11006
Google Scholar
[4]
K. Mortensen, Structural studies of aqueous solutions of PEO–PPO–PEO triblock copolymers, their micellar aggregates and mesophases; a small-angle neutron scattering study, Phys.: Condens. Matter. 8 (1996) A103-A124.
DOI: 10.1088/0953-8984/8/25a/008
Google Scholar
[5]
J.J. Escobar-Chávez, M. López-Cervantes, A. Naïk, Y.N. Kalia, D. Quintanar-Guerrero, A. Ganem-Quintanar, Applications of thermo-reversible pluronic F-127 gels in pharmaceutical formulations, J. Pharm. Sci, 9 (2006) 339-358.
DOI: 10.1080/10837450600940824
Google Scholar
[6]
S.M. Shishido, A.B. Seabra, W. Loh, M.G. Oliveira, Thermal and photochemical nitric oxide release from S-nitrosothiols incorporated in Pluronic F127 gel: potential uses for local and controlled nitric oxide release, Biomaterials 24 (2003).
DOI: 10.1016/s0142-9612(03)00153-4
Google Scholar
[7]
Y.F. Zhao, J. Ma, Triblock co-polymer templating synthesis of mesostructured hydroxyapatite, Microporous and Mesoporous Mater. 87 (2005) 110-117.
DOI: 10.1016/j.micromeso.2005.07.046
Google Scholar
[8]
P. Peng, N.H. Voelcker, S. Kumar, H.J. Griesser, Concurrent elution of calcium phosphate and macromolecules from alginate/chitosan hydrogel coatings, Biointerphases 3 (2009) 105-117.
DOI: 10.1116/1.3046123
Google Scholar
[9]
R. Tan, X. Niu, S. Gan, Q. Feng, Preparation and characterization of an injectable composite, J. Mater. Sci.: Mater. Med. 20 (2009) 1245-1253.
DOI: 10.1007/s10856-009-3692-6
Google Scholar
[10]
L. Sang, J. Huang, D. Luo, Z. Chen, X. Li, Bone-like nanocomposites based on self-assembled protein-based matrices with Ca2+ capturing capability, J. Mater. Sci.: Mater. Med. 21 (2010) 2561–2568.
DOI: 10.1007/s10856-010-4117-2
Google Scholar
[11]
F.L. de Paula, I.C. Barreto, M.H. Rocha-Leão, R. Borojevic, A.M. Rossi, F.P. Rosa, M. Faroma, Hydroxyapatite-alginate biocomposite promotes bone mineralization in different length scales in vivo, Mater. Sci. China. 3 (2009) 145–153.
DOI: 10.1007/s11706-009-0029-9
Google Scholar
[12]
JCPDS Information Center for Diffraction Data, card numbers: 09-0169 and 09-0432, (1997).
Google Scholar
[13]
R. Cuscó F. Guitián S. de Aza and L. Artús, Differentiation between Hydroxyapatite and b-Tricalcium Phosphate by Means of m-Raman Spectroscopy, J. Eur. Cer. Soc. 18 (1998) 1301-1305.
DOI: 10.1016/s0955-2219(98)00057-0
Google Scholar
[14]
J. C. Elliot, Strucuture and Chemistry of the Apatites and Other Calcium Orthophosphates, first ed., Elsevier, Amsterdan, (1937).
Google Scholar
[15]
R. Vani, E.K. Girija, K. Elayaraja, S. P Parthiban, R. Kesavamoorthy, S.N. Kalkura, Hydrothermal synthesis of porous triphasic hydroxyapatite/(a and b) tricalcium phosphate, J. Mater. Sci: Mater. Med. 20 (2009) S43–S48.
DOI: 10.1007/s10856-008-3480-8
Google Scholar
[16]
Information on http: /wwwobs. univ-bpclermont. fr/sfmc/ramandb2/index. html.
Google Scholar
[17]
Information on http: /riodb. ibase. aist. go. jp/rasmin.
Google Scholar
[18]
R. Bottom, Thermogravimetric Annalysis, in: P. Gabbott (Ed), Applications of thermal analysis, Blackwell Publishing, Oxford, 2008, p.110.
Google Scholar