Synthesis and Characterization of Nanocrystalline Anatase by Microwave Hydrothermal Method

Article Preview

Abstract:

Uniform nanocrystalline pure anatase has been synthesized and characterized using tetrabutyl titanate aqueous solution as starting precursors by microwave hydrothermal method. The influences of synthesis conditions (reaction time and temperature) on the formation, crystal phase and crystallite size of TiO2 has been investigated. A mixture solution of tetrabutyl titanate and normal butyl alcohol in 1:4 molar ratio is processed in a microwave hydrothermal autoclave at low temperature 120°C for different durations, at 200°C for 20 min to precipitate titania powders, respectively. It was revealed that uniformly dispersed and granulous single phase anatase prepared at 120°C for 180 min with the average particle size of 10 nm was formed by means of XRD and TEM.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

104-107

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Wang YH, Yang HX, Xu HM: Mater. Lett. Vol. 64 (2010), p.164.

Google Scholar

[2] Dalton JS, Janes PA, Jones NG., et al.: Environ Pollut Vol. 120 (2002), p.415.

Google Scholar

[3] CY Hu, SW Duo, RF Zhang, et al.: Materials Letter, Vol. 64 (2010), p. (2040).

Google Scholar

[4] Kamal Akhtar, M., Xiong, Y., Pratsinis, S. E.: Res. Soc. Symp. Proc. Vol. 249 (1992), p.139.

Google Scholar

[5] Tadafumi A., Katsuhito K., Kunio A.: J. Am. Ceram. Soc. Vol. 75 (1992), p.1019.

Google Scholar

[6] Jones, W. J., Tooze, J. F. Eur. Pat. Appl.; No. EP 0505022A1, 08. 01. 92.

Google Scholar

[7] Kutty T.R.N., Vivekanandan R., Murugaraj P.: Mater. Chem. Phys. Vol. 29 (1988), p.533.

Google Scholar

[8] Hu L., Gu Y., Gu J., et al.: Huadong Huagong Xueyuan Xuebao Vol. 16 (1990), p.260.

Google Scholar

[9] S.R. Dhage, Renu Pasricha, V. Ravi: Mater. Res. Bull. Vol. 38 (2003), p.1623.

Google Scholar

[10] S.R. Dhage, V. Choube, V. Samuel, et al.: Mater. Lett. Vol. 58 (2004), p.2310.

Google Scholar

[11] Chen YG, Dionysiou DD: J Mol Catal A Vol. 244 (2006), p.73.

Google Scholar

[12] Sridhar Komareni: CURRENT SCIENCE Vol. 85 (2003), p.1730.

Google Scholar

[13] A.V. Murugan, C.W. Kwon, G. Campet, et al.: J. Phys. Chem. B 108 (2004), p.10736.

Google Scholar

[14] S. Komareni, R.K. Rajha, H. Katsuki: Mater. Chem. Phys. Vol. 61 (1999), p.50.

Google Scholar

[15] E.D. Neas, M.J. Collins, in: H.M. Kingston, L.B. Jessie (Eds. ), Introduction to Microwave Sample Preparation, Theory, and Practice, American Chemical Society, Washington, DC, 1988, p.7–32.

Google Scholar

[16] ZQ Chen, WJ Zeng, WK Li, et al.: Advanced Materials Research Vol. 177 (2011), p.357.

Google Scholar