Preparation and Dielectric Properties of Cr Doped Multiferroic BiFeO3

Article Preview

Abstract:

A series of Cr doped multiferroic BiFeO3 (BFO) with the composition of BiFe1-xCrxO3 have been prepared using hydrothermal method, in which x varies as 0, 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5. The synthesis temperature is carried out as low as 230 °C under hydrothermal conditions. With the increase of the content of Cr, the second phase is gradually increased. When the value of Cr is 0.5, the main peak (110) and (104) of BFO tends to disappear, in which the structure of BFO is changed. The permittivity of as-prepared samples decreases with the increase of Cr content and excellent frequency stability is exhibited. Better grain structure can be obtained for samples sintered at 830 °C

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 512-515)

Pages:

1240-1243

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Eerenstein, N. D. Mathur, J. F. Scot, Multiferroic and magnetoelectric materials, Nature 442 (2006) 759-765.

DOI: 10.1038/nature05023

Google Scholar

[2] R. Ramesh, N.A. Spaldin, Multiferroics: progress and prospects in thin films, Nat. Mater. 6 (2007) 21-29.

DOI: 10.1038/nmat1805

Google Scholar

[3] C. N. R. Rao, C. R. Serrao, New routes to multiferroics, J. Mater. Chem. 17 (2007) 4931-4938.

Google Scholar

[4] Y. Tokura, Multiferroics—toward strong coupling between magnetization and polarization in a solid, J. Magn. Magn. Mater. 310 (2007) 1145-1150.

DOI: 10.1016/j.jmmm.2006.11.198

Google Scholar

[5] S. Ju, G. Y. Guo, Appl. Colossal nonlinear optical magnetoelectric effects in multiferroic Bi2FeCrO6, Phys. Lett. 92 (2008) 202504.

DOI: 10.1063/1.2927474

Google Scholar

[6] P. Baettig, N. A. Spaldin, Ab initio prediction of a multiferroic with large polarization and magnetization, Appl. Phys. Lett. 86 (2005) 012505.

DOI: 10.1063/1.1843290

Google Scholar

[7] D. H. Kim, H. N. Lee, M. D. Biegalski, H. M. Christen, Large ferroelectric polarization in antiferromagnetic BiFe0.5Cr0.5O3 epitaxial films, Appl. Phys. Lett. 91 (2007) 042906.

DOI: 10.1063/1.2763964

Google Scholar

[8] M. R. Suchomel, C. I. Thomas, M. Allix, et al., High pressure bulk synthesis and characterization of the predicted multiferroic Bi(Fe1/2Cr1/2)O3, Appl. Phys. Lett. 90 (2007) 112909.

DOI: 10.1063/1.2713757

Google Scholar

[9] X.W. Qi, J. Zhou, Z. X. Yue, et al., A Ferroelectric Ferromagnetic Composite Material with Significant Permeability and Permittivity, Adv. Funct. Mater. 14 (2004) 920-926.

DOI: 10.1002/adfm.200305086

Google Scholar

[10] R. Nechache, C. Harnagea, L. P. Carignan, et al., Structure and properties of epitaxial thin films of Bi2FeCrO6: a multiferroic material postulated by ab-initio computation, Integ. Ferroelec., 101 (2008) 152-163.

DOI: 10.1080/10584580802470900

Google Scholar

[11] N.A. Hill, Why Are There so Few Magnetic Ferroelectrics? J. Phys. Chem. B, 104 (2000) 6694-6709.

DOI: 10.1021/jp000114x

Google Scholar

[12] Q. H. Jiang, C. W. Nan, Z. J. Shen, Synthesis and Properties of Multiferroic La-Modified BiFeO3 Ceramics, J. Am. Ceram. Soc. 89 (2006) 2123-2127.

Google Scholar

[13] S. Wiza, W. Bednarski, S. Waplak, et al., Multiferroic BiFeO3 Nanoparticles Studied by Electron Spin Resonance, X-ray Diffraction and Transmission Electron Microscopy Methods, J. Nanosci. Nanotechnol. 9 (2009) 3246-3251.

DOI: 10.1166/jnn.2009.227

Google Scholar

[14] J. Wang, J. B. Neaton, H. Zheng, et al., Epitaxial BiFeO3 multiferroic thin film heterostructures, Science 299 (2003) 1719-1722.

Google Scholar

[15] Y. P. Wang, G. L. Yuan, X. Y. Chen, et al., Electrical and magnetic properties of single-phased and highly resistive ferroelectromagnet BiFeO3 ceramic, J. Phys D: Appl. Phys. 39 (2006) 2019-2023.

DOI: 10.1088/0022-3727/39/10/006

Google Scholar

[16] H. Naganuma, J. Miura, S. Okamura, Ferroelectric, electrical and magnetic properties of Cr, Mn, Co, Ni, Cu added polycrystalline BiFeO3 films, Appl. Phys. Lett. 93 (2008) 052901.

DOI: 10.1063/1.2965799

Google Scholar

[17] Z. Y. Zhong, S. K. Singh, Y. Sugiyama, H. Ishiwara, Ferroelectric Properties of Cr-Doped BiFeO3 Films Crystallized below 500 °C, Jpn. J. Appl. Phys. 48 (2009) 101402.

DOI: 10.1143/jjap.48.101402

Google Scholar

[18] S. Yasui, H. Uchida, H. Nakaki, et al., Analysis for crystal structure of Bi(Fe,Sc)O3 thin films and their electrical properties, Appl. Phys. Lett. 91 (2007) 022906.

DOI: 10.1063/1.2756356

Google Scholar

[19] Y. Du, Z. X. Cheng, S. X. Dou, et al., Enhancement of ferromagnetic and dielectric properties in lanthanum doped BiFeO3 by hydrothermal synthesis, J. All. Comp. 490 (2010) 637-641.

DOI: 10.1016/j.jallcom.2009.10.124

Google Scholar

[20] Y. Du, Z. X. Cheng, S. X. Dou, et al., Enhancement of magnetization and dielectric properties of chromium-doped BiFeO3 with tunable morphologies, Thin Solid Films 518 (2010) e5-e8.

DOI: 10.1016/j.tsf.2010.03.118

Google Scholar