[1]
C.L. Lo, J.G. Duh, D.S. Chiou and W.H. Lee, Low-Temperature Sintering and Microwave Dielectric Properties of Anorthite-Based Glass-Ceramics, J. Am. Ceram. Soc. 85 (2002) 2230-2235.
DOI: 10.1111/j.1151-2916.2002.tb00440.x
Google Scholar
[2]
H. Jantunen, R. Rautioaho, A. Uusimaki and S. Leppavuori, Compositions of MgTiO3–CaTiO3 ceramic with two borosilicate glasses for LTCC technology, J. Eur. Ceram. Soc. 20 (2000) 2331-2336.
DOI: 10.1016/s0955-2219(00)00145-x
Google Scholar
[3]
P. S. Anjana, I. N. Jawahar and M. T. Sebastian, Low loss, temperature stable dielectric ceramics in ZnNb2O6–Zn3Nb2O8 system for LTCC applications, J. Mater. Sci: Mater. Electron. 20 (2009) 587-596.
DOI: 10.1007/s10854-008-9770-6
Google Scholar
[4]
M. Z. Jhou, J. H. Jean, J. Am. Ceram. Soc. Low-fire processing of microwave BaTi4O9 dielectric with BaO–ZnO–B2O3 glass, 89 (2006) 786-791.
DOI: 10.1111/j.1551-2916.2005.00790.x
Google Scholar
[5]
Y. Xu, G. Huang and Y. He, Sol–gel preparation of Ba6−3xSm8+2xTi18O54 microwave dielectric ceramics Ceram. Intern. 31 (2005) 21-25.
DOI: 10.1016/j.ceramint.2004.02.007
Google Scholar
[6]
A. Y. Borisevich, P. K. Davies, Microwave dielectric properties of Li1+x-yM1-x-3yTix+4yO3 (M=Nb5+, Ta5+) solid solutions, J. Eur. Ceram. Soc. 21 (2001) 1719-1722.
DOI: 10.1016/s0955-2219(01)00101-7
Google Scholar
[7]
A. Y. Borisevich, P. K. Davies, Effect of V2O5 doping on the sintering and dielectric properties of M-Phase Li1+x−yNb1−x−3yTix+4yO3 ceramics, J. Am. Ceram. Soc. 87 (2004) 1047-1052.
DOI: 10.1111/j.1151-2916.2002.tb00134.x
Google Scholar
[8]
D. H. Kang, K. C. Nam, H. J. Cha, Effect of Li2O–V2O5 on the low temperature sintering and microwave dielectric properties of Li1.0Nb0.6Ti0.5O3 ceramics, J. Eur. Ceram. Soc. 26 (2006) 2117-2121.
DOI: 10.1016/j.jeurceramsoc.2005.09.067
Google Scholar
[9]
Q. Zeng, W. Li, J. L. Shi, J. K. Guo, A new microwave dielectric ceramic for LTCC applications, J. Am. Ceram. Soc. 89 (2006) 1733-1735.
Google Scholar
[10]
Q. Zeng, W. Li, J. L. Shi, J. K. Guo, Fabrication and microwave dielectric properties of a new LTCC ceramic composite based on Li2O-Nb2O5-TiO2 system, Mater. Lett. (2006) 3203-3206.
DOI: 10.1016/j.matlet.2006.02.070
Google Scholar
[11]
Q. Zeng, W. Li, J. L. Shi, J. K. Guo, A new Li2O–Nb2O5–TiO2 microwave dielectric ceramic composite Phys. Stat. Sol (a). 203 (2006) R91-R93.
DOI: 10.1002/pssa.200622301
Google Scholar
[12]
H. Zhou, H. Wang, K. Li and X. Yao, Microwave dielectric properties of the 5.7Li2O–Nb2O5–7.3TiO2 ceramics, J. Mater. Sci. 43 (2008) 3725-3727.
DOI: 10.1007/s10853-008-2572-7
Google Scholar
[13]
B. W. Hakki, P. D. Coleman, A dielectric resonator method of measuring inductive capacities in the millimeter range, IRE. Trans. MTT. 8 (1960) 402-410.
DOI: 10.1109/tmtt.1960.1124749
Google Scholar
[14]
W. E. Courtney, Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators, IEEE. Trans. MTT. 18 (1970) 476-485.
DOI: 10.1109/tmtt.1970.1127271
Google Scholar
[15]
JCPDS file No. 33-0831.
Google Scholar
[16]
R. I. Smith, A. R. West, Characterisation of an incommensurate LiTiNb oxide, Mater. Res. Bull. 27 (1992) 277-285.
DOI: 10.1016/0025-5408(92)90056-6
Google Scholar
[17]
A.Y. Borisevich, P. K. Davies, Crystalline structure and dielectric properties of Li1+x−yNb1−x−3yTix+4yO3 M-Phase solid solutions, J. Am. Ceram. Soc. 85 (2002) 573-578.
DOI: 10.1111/j.1151-2916.2002.tb00134.x
Google Scholar