[1]
M. A. Subramanian, D. Li, N. Duan, et al., High dielectric constant in ACu(3)Ti(4)O(12) and ACu(3)Ti(3)FeO(12) phases, Journal of Solid State Chemistry. 151 (2000) 323-25.
Google Scholar
[2]
S. Y. Chung, I. D. Kim and S. J. L. Kang, Strong nonlinear current-voltage behaviour in perovskite-derivative calcium copper titanate, Nat. Mater. 3 (2004) 774-78.
DOI: 10.1038/nmat1238
Google Scholar
[3]
P. R. Bueno, J. A. Varela and E. Longo, SnO2, ZnO and related polycrystalline compound semiconductors: An overview and review on the voltage-dependent resistance (non-ohmic) feature, J. Eur. Ceram. Soc. 28 (2008) 505-29.
DOI: 10.1016/j.jeurceramsoc.2007.06.011
Google Scholar
[4]
M. H. Whangbo and M. A. Subramanian, Structural model of planar defects in CaCu3Ti4O12 exhibiting a giant dielectric constant, Chem. Mater. 18 (2006) 3257-60.
DOI: 10.1021/cm060323f
Google Scholar
[5]
P. R. Bueno, R. Tararan, R. Parra, et al., A polaronic stacking fault defect model for CaCu3Ti4O12 material: an approach for the origin of the huge dielectric constant and semiconducting coexistent features, J. Phys. D Appl. Phys. 42 (2009) 055404.
DOI: 10.1088/0022-3727/42/5/055404
Google Scholar
[6]
W. C. Ribeiro, E. Joanni, R. Savu and P. R. Bueno, Nanoscale effects and polaronic relaxation in CaCu3Ti4O12 compounds, Solid State Commun. 151 (2011) 173-76.
Google Scholar
[7]
T. Nakamura, J. Harada, M. Ito and H. Kawaji, Cation ion exchangeability in the system of solid BaTiO3 -MCl2 (M = Ca, Cd, Mn, Cr, Co, Zn,Ni) by DTA measurement. In: Proceeding of 1st reactivity of solid. Tokyo, Japan: Chemical Society of Japan; 1990, p.21.
Google Scholar
[8]
M. J. Pan and B. A. Bender, A bimodal grain size model for predicting the dielectric constant of calcium copper titanate ceramics, J. Am. Ceram. Soc. 88 (2005) 2611-14.
DOI: 10.1111/j.1551-2916.2005.00455.x
Google Scholar
[9]
S. Sarkar, B. K. Chaudhuri and H. D. Yang, Nanostripe domains in CaCu3Ti4O12: Its origin and influences on high permittivity response, J. Appl. Phys. 108 (2010) 014114.
DOI: 10.1063/1.3457231
Google Scholar
[10]
L. Marchin, S. Guillemet-Fritsch, B. Durand, et al., Grain growth-controlled giant permittivity in soft chemistry CaCu3Ti4O12 ceramics, J. Am. Ceram. Soc. 91 (2008) 485-89.
DOI: 10.1111/j.1551-2916.2007.02174.x
Google Scholar
[11]
B. A. Bender and M. J. Pan, The effect of processing on the giant dielectric properties of CaCu3Ti4O12, Mat. Sci. Eng. B-Solid. 117 (2005) 339-47.
Google Scholar
[12]
L. Ni and X. M. Chen, Enhancement of Giant Dielectric Response in CaCu3Ti4O12 Ceramics by Zn Substitution, J. Am. Ceram. Soc. 93 (2010) 184-89.
Google Scholar
[13]
V.P.B. Marques, P.R. Bueno, A. Z. Simoes, et al., Nature of potential barrier in (Ca-1/4,Cu-3/4)TiO3 polycrystalline perovskite, Solid State Commun. 138 (2006) 1-4.
Google Scholar
[14]
V. P. B. Marques, A. Ries, A. Z. Simoes, M. A. Ramirez, J. A. Varela, and E. Longo, Evolution of CaCu3Ti4O12 varistor properties during heat treatment in vacuum, Ceram. Int. 33 (2007) 1187-90.
DOI: 10.1016/j.ceramint.2006.04.003
Google Scholar
[15]
D. C. Sinclair, T. B. Adams, F. D. Morrison and A. R. West, CaCu3Ti4O12: One-step internal barrier layer capacitor, Appl. Phys. Lett. 80 (2002) 2153-55.
DOI: 10.1063/1.1463211
Google Scholar