ZnTiO3 Doping Effect on Dielectric Properties of CCTO Ceramics via a Molten Salt Process

Article Preview

Abstract:

CaCu3Ti4O12 (CCTO) powder was prepared by solid-state reaction. CCTO-ZnTiO3 composite ceramic were prepared by reaction of CCTO powder with molten ZnCl2 in air, 400°C. The products were examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The electric and dielectric properties of CCTO-ZnTiO3 composite ceramic were investigated. It is shown that the ceramic composites have higher grain-boundary resistivity and nonlinear coefficient. The addition of Zn mainly formed in the form of ZnTiO3 also affected the low frequency capacitance values, reduced the CCTO ceramic dielectric loss, which showed a Schottky-type nature of potential barrier. Moreover, the mechanisms involved in the NBLC model were discussed, where it is working with the IBLC model.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 512-515)

Pages:

1231-1234

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. A. Subramanian, D. Li, N. Duan, et al., High dielectric constant in ACu(3)Ti(4)O(12) and ACu(3)Ti(3)FeO(12) phases, Journal of Solid State Chemistry. 151 (2000) 323-25.

Google Scholar

[2] S. Y. Chung, I. D. Kim and S. J. L. Kang, Strong nonlinear current-voltage behaviour in perovskite-derivative calcium copper titanate, Nat. Mater. 3 (2004) 774-78.

DOI: 10.1038/nmat1238

Google Scholar

[3] P. R. Bueno, J. A. Varela and E. Longo, SnO2, ZnO and related polycrystalline compound semiconductors: An overview and review on the voltage-dependent resistance (non-ohmic) feature, J. Eur. Ceram. Soc. 28 (2008) 505-29.

DOI: 10.1016/j.jeurceramsoc.2007.06.011

Google Scholar

[4] M. H. Whangbo and M. A. Subramanian, Structural model of planar defects in CaCu3Ti4O12 exhibiting a giant dielectric constant, Chem. Mater. 18 (2006) 3257-60.

DOI: 10.1021/cm060323f

Google Scholar

[5] P. R. Bueno, R. Tararan, R. Parra, et al., A polaronic stacking fault defect model for CaCu3Ti4O12 material: an approach for the origin of the huge dielectric constant and semiconducting coexistent features, J. Phys. D Appl. Phys. 42 (2009) 055404.

DOI: 10.1088/0022-3727/42/5/055404

Google Scholar

[6] W. C. Ribeiro, E. Joanni, R. Savu and P. R. Bueno, Nanoscale effects and polaronic relaxation in CaCu3Ti4O12 compounds, Solid State Commun. 151 (2011) 173-76.

Google Scholar

[7] T. Nakamura, J. Harada, M. Ito and H. Kawaji, Cation ion exchangeability in the system of solid BaTiO3 -MCl2 (M = Ca, Cd, Mn, Cr, Co, Zn,Ni) by DTA measurement. In: Proceeding of 1st reactivity of solid. Tokyo, Japan: Chemical Society of Japan; 1990, p.21.

Google Scholar

[8] M. J. Pan and B. A. Bender, A bimodal grain size model for predicting the dielectric constant of calcium copper titanate ceramics, J. Am. Ceram. Soc. 88 (2005) 2611-14.

DOI: 10.1111/j.1551-2916.2005.00455.x

Google Scholar

[9] S. Sarkar, B. K. Chaudhuri and H. D. Yang, Nanostripe domains in CaCu3Ti4O12: Its origin and influences on high permittivity response, J. Appl. Phys. 108 (2010) 014114.

DOI: 10.1063/1.3457231

Google Scholar

[10] L. Marchin, S. Guillemet-Fritsch, B. Durand, et al., Grain growth-controlled giant permittivity in soft chemistry CaCu3Ti4O12 ceramics, J. Am. Ceram. Soc. 91 (2008) 485-89.

DOI: 10.1111/j.1551-2916.2007.02174.x

Google Scholar

[11] B. A. Bender and M. J. Pan, The effect of processing on the giant dielectric properties of CaCu3Ti4O12, Mat. Sci. Eng. B-Solid. 117 (2005) 339-47.

Google Scholar

[12] L. Ni and X. M. Chen, Enhancement of Giant Dielectric Response in CaCu3Ti4O12 Ceramics by Zn Substitution, J. Am. Ceram. Soc. 93 (2010) 184-89.

Google Scholar

[13] V.P.B. Marques, P.R. Bueno, A. Z. Simoes, et al., Nature of potential barrier in (Ca-1/4,Cu-3/4)TiO3 polycrystalline perovskite, Solid State Commun. 138 (2006) 1-4.

Google Scholar

[14] V. P. B. Marques, A. Ries, A. Z. Simoes, M. A. Ramirez, J. A. Varela, and E. Longo, Evolution of CaCu3Ti4O12 varistor properties during heat treatment in vacuum, Ceram. Int. 33 (2007) 1187-90.

DOI: 10.1016/j.ceramint.2006.04.003

Google Scholar

[15] D. C. Sinclair, T. B. Adams, F. D. Morrison and A. R. West, CaCu3Ti4O12: One-step internal barrier layer capacitor, Appl. Phys. Lett. 80 (2002) 2153-55.

DOI: 10.1063/1.1463211

Google Scholar