Enhanced Piezoelectric Properties of (Na0.535K0.485)0.905Li0.095(Nb0.94Ta0.06)O3 –(Na0.5Bi0.5)TiO3 Lead-Free Piezoelectric Ceramics in the MPB Composition

Article Preview

Abstract:

In this paper, end members of tetragonal phase (Na0.535K0.485)0.905Li0.095(Nb0.94Ta0.06)O3 (abbreviated as NKLN) and rhombohedral phase (Na0.5Bi0.5)TiO3 (abbreviated as NBT) were used to fabricate dense (1-x)NKLN-xNBT (x=0, 0.005, 0.01, 0.02, 0.03, 0.04) lead-free piezoelectric ceramics. By increasing the NBT content x value, the crystalline structure changes from tetragonal phase to rhombohedral one across a morphotropic phase boundary (MPB) composition of x=0.02. In this MPB composition, enhanced electrical properties were obtained as follows: piezoelectric constant d33=202 pC/N, planar electromechanical coupling coefficient kp=39.6%, relative dielectric constant εr=1020 and dielectric loss tgδ=2.67%, indicating that this ceramic was a promising lead-free piezoelectric material for practical applications.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 512-515)

Pages:

1390-1394

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Saito, H. Takato, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya and M. Nakamura, Lead-free piezoceramics, Nature 432 (2004) 84-87.

DOI: 10.1038/nature03028

Google Scholar

[2] J. Rödel, W. Jo, K.T.P. Seifert, E.M. Anton and T. Granzow, Perspective on the development of lead-free piezoceramics, J. Am. Ceram. Soc. 92 (2009) 1153-1176.

DOI: 10.1111/j.1551-2916.2009.03061.x

Google Scholar

[3] Z.Y. Shen, Y. Zhen, K. Wang and J.-F. Li, Influence of sintering temperature on grain growth and phase structure of compositionally optimized high-performance Li/Ta-modified (Na,K)NbO3 ceramics, J. Am. Ceram. Soc. 92 (2009) 1748-1752.

DOI: 10.1111/j.1551-2916.2009.03128.x

Google Scholar

[4] B.-P. Zhang, J.-F. Li, K. Wang and H. Zhang, Compositional Dependence of Piezoelectric Properties in NaxK1-xNbO3 Lead-free Ceramics Prepared by Spark Plasma Sintering, J. Am. Ceram. Soc. 89 (2006) 1605-1609.

DOI: 10.1111/j.1551-2916.2006.00960.x

Google Scholar

[5] R. Zuo, X. Fang and C. Ye, Phase Structures and Electrical Properties of New Lead Free (Na0.5K0.5)NbO3-(Bi0.5Na0.5)TiO3 Ceramics, Appl. Phys. Lett. 90 (2007) 092904.

DOI: 10.1063/1.2710768

Google Scholar

[6] Y.M. Li, Z.Y. Shen, L. Jiang, F. Wu, Z.M. Wang, Y. Hong and R.H. Liao, Microstructure, phase transition and electrical properties of LiSbO3-doped (K0.49Na0.51)NbO3 lead-free piezoelectric ceramics, J. Mater. Sci.: Mater. Electron. 22 (2011) 1409-1414.

DOI: 10.1007/s10854-011-0322-0

Google Scholar

[7] K. Wang, J.-F. Li, Domain engineering of lead-free Li-modified (K,Na)NbO3 polycrystals with highly enhanced piezoelectricity, Adv. Funct. Mater. 20 (2010) 1924-1929.

DOI: 10.1002/adfm.201000284

Google Scholar

[8] R. Zuo, J. Fu, D. Lv and Y. Liu, Antimony tuned rhombohedral-orthorhombic phase transition and enhanced piezoelectric properties in sodium potassium niobate, J. Am. Ceram. Soc. 93 (2010) 2783-2787.

DOI: 10.1111/j.1551-2916.2010.03804.x

Google Scholar

[9] M. I. Morozov, H. Kungl, M. J. Hoffmann, Effects of poling over the orthorhombic-tetragonal phase transition temperature in compositionally homogeneous (K,Na)NbO3-based ceramics, Appl. Phys. Lett. 98 (2011) 132908.

DOI: 10.1063/1.3573790

Google Scholar

[10] R. Huang, Y. Zhao, X. Zhang, Y. Zhao, R. Liu and H. Zhou, Low-temperature sintering of CuO-doped 0.94(K0.48Na0.535)NbO3-0.06LiNbO3 lead-free piezoelectric ceramics, J. Am. Ceram. Soc. 93 (2010) 4018-4021.

DOI: 10.1111/j.1551-2916.2010.04227.x

Google Scholar

[11] Z.Y. Shen, Y.M. Li, L. Jiang, R.R. Li, Z.M. Wang, Y. Hong and R.H. Liao, Phase transition and electrical properties of LiNbO3-modified K0.49Na0.51NbO3 lead-free piezoceramics, J. Mater. Sci.: Mater. Electron. 22 (2011) 1071-1075.

DOI: 10.1007/s10854-010-0261-1

Google Scholar

[12] EU-Directive 2002/96/EC: Waste Electrical and Electronic Equipment (WEEE): Off. J. Eur. Union 46 (2003) 24.

Google Scholar

[13] Y. Gao, J. Zhang, Y. Qing, Y. Tan, Z. Zhang and X. Hao, Remarkably strong piezoelectricity of lead-free (K0.45Na0.55)0.98Li0.02(Nb0.77Ta0.18Sb0.05)O3 ceramic, J. Am. Ceram. Soc. 94 (2011) 2968-2973.

DOI: 10.1111/j.1551-2916.2011.04468.x

Google Scholar

[14] T.A. Skidmore, T.P. Comyn, S. J. Milne, Temperature stability of ([Na0.5K0.5NbO3]0.93-[LiTaO3]0.07) lead-free piezoelectric ceramics, Appl. Phys. Lett. 94 (2009) 222902.

DOI: 10.1063/1.3153157

Google Scholar

[15] Y. Dai, X. Zhang, G. Zhou, Phase transitional behavior in K0.5Na0.5NbO3-LiTaO3 ceramics, Appl. Phys. Lett. 90 (2007) 262903.

Google Scholar

[16] B. Jaffe, R. S. Roth, S. Marzullo, Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics, J. Appl. Phys. 25 (1954) 809-810.

DOI: 10.1063/1.1721741

Google Scholar

[17] Y. Guo, K. I. Kakimoto, H. Ohsato, (K0.5Na0.5)NbO3-LiTaO3 lead-free piezoelectric ceramics, Mater. Lett. 59 (2005) 241-244.

DOI: 10.1016/j.matlet.2004.07.057

Google Scholar

[18] Z.Y. Shen, K. Wang, J.-F. Li, Combined effects of Li content and sintering temperature on polymorphic phase boundary and electrical properties of Li/Ta co-doped (Na,K)NbO3 lead-free piezoceramics, Appl. Phys. A 97 (2009) 911-917.

DOI: 10.1007/s00339-009-5358-0

Google Scholar

[19] Y. Hiruma, T. Watanabe, H. Nagata and T. Takenaka, Piezoelectric properties of (Bi1/2Na1/2)TiO3-based solid solution for lead-free high-power application, Jpn. J. Appl. Phys. 47 (2008) 7659-7663.

DOI: 10.1143/jjap.47.7659

Google Scholar

[20] M. N. Rahaman, Ceramic Processing and Sintering, CRC Press, 2003.

Google Scholar

[21] B. Jaffe, W. R. Cook, H. Jaffe, Piezoelectric Ceramics, Academic, London and New York, 1971.

Google Scholar