Piezoelectric and Strain Properties of Strontium-Doped BZT-BCT Lead-Free Ceramics

Article Preview

Abstract:

Lead-free piezoelectric ceramics, (Ba0.85-xSrxCa0.15)(Zr0.1Ti0.9)O3 (BSCZT, x=0.01-0.07), were prepared via a solid-state reaction route. The dielectric properties, ferroelectric properties, piezoelectric and strain properties of BSCZT ceramics were studied. The phase structure and microstructure were investigated by X-ray diffraction and scanning electron microscope, respectively. Results showed that dense ceramics with pure perovskite phase were obtained. At room temperature, the samples with x=0.03 exhibited excellent properties with large piezoelectric coefficient d33=534pC/N, planar mode electromechanical coupling coefficient kp=47.7%, thickness mode electromechanical coupling coefficient kt= 42% and high strain levels of 0.34%. In addition, the study of electrical properties suggested that the Curie temperature decreased linearly from 92oc to 73oc with the increasing doping content of strontium in BCZT ceramics. The remnant polarizations, piezoelectric coefficient and strain levels were all increased as the Sr content increased and then decreased with further increased Sr doping level, giving the maximum values at the Sr content of 3mol%. These results indicated that the BSCZT system is a promising lead-free material for applications in the future.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 512-515)

Pages:

1385-1389

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. H. Haertling, Ferroelectric ceramics: History and technology, J. Am. Ceram. Soc. 82 (1999) 797-818.

Google Scholar

[2] T. R. Shrout , S. J. Zhang, Lead-free piezoelectric ceramics: Alternatives for PZT, J Electroceram. 19 (2007) 113-26.

DOI: 10.1007/s10832-007-9047-0

Google Scholar

[3] T. Takenaka, H. Nagata, Current status and prospects of lead-free piezoelectric ceramics, J Eur Ceram Soc. 25 (2005) 2693-700.

Google Scholar

[4] X. B. Ren, Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching, Nat Mater. 3 (2004) 91-94.

DOI: 10.1038/nmat1051

Google Scholar

[5] S. Pruvost, L. Lebrun, G. Sebald, L. Seveyrat, D. Guyomar, S. J. Zhang, T. R. Shrou, Correlation Between macroscopic properties and microscopic parameters versus stress in tetragonal Pb(Mg1/3Nb2/3)0.6Ti0.4O3 ferroelectric ceramics, J Appl Phys. 100 (2006).

DOI: 10.1063/1.2355541

Google Scholar

[6] J. Rodel, W. Jo, K. T. P. Seifert, E. M. Anton, T. Granzow, D. Damjanovic, Perspective on the Development of Lead-free Piezoceramics,J Am Ceram Soc. 92 (2009) 1153-77.

DOI: 10.1111/j.1551-2916.2009.03061.x

Google Scholar

[7] Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead-free piezoceramics, Nature. 432 (2004) 84-87.

DOI: 10.1038/nature03028

Google Scholar

[8] W. F. Liu ,X. B. Ren, Large Piezoelectric Effect in Pb-Free Ceramics,Phys Rev Lett. 103 (2009).

Google Scholar

[9] Z. Yu, R. Y. Guo, A. S. Bhalla, Orientation dependence of the ferroelectric and piezoelectric behavior of Ba(Ti1-xZrx)O-3 single crystals, Appl Phys Lett. 77 (2000) 1535-37.

DOI: 10.1063/1.1308276

Google Scholar

[10] Z. Yu, R. Y. Guo, A. S. Bhalla, Dielectric behavior of Ba(Ti1-xZrx)O3 single crystals,J Appl Phys. 88 (2000) 410-15.

DOI: 10.1063/1.373674

Google Scholar

[11] Z. Yu, R. Y. Guo, A. S. Bhalla, Growth of Ba(Ti1-XZrX)O3 single crystal fibers by laser heated pedestal growth technique, Ferroelectrics Lett. 27 (2000) 113-23.

DOI: 10.1016/s0022-0248(01)01520-2

Google Scholar

[12] S. F. Shao, J. L. Zhang, P. Zheng, W. L. Zhong, C. L. Wang, Microstructure and electrical properties of CaCu3Ti4O12 ceramics, J Appl Phys. 99 (2006).

Google Scholar

[13] X. L. Wang, Z. X. Cheng, C. V. Kannan, K. Ozawa, H. Kimura, T. Nishida, S. J. Zhang, T. R. Shrou, Orientation dependent ferroelectric properties in samarium doped bismuth titanate thin films grown by the pulsed-laser-ablation method, Appl Phys Lett. 88 (2006).

DOI: 10.1063/1.2221918

Google Scholar

[14] D. Damjanovic, A morphotropic phase boundary system based on polarization rotation and polarization extension, Appl Phys Lett. 97 (2010).

DOI: 10.1063/1.3479479

Google Scholar

[15] H. X. Bao, C. Zhou, D. Z. Xue, J. H. Gao, X. B. Ren, A modified lead-free piezoelectric BZT-xBCT system with higher T(C), J Phys D Appl Phys. 43 (2010).

DOI: 10.1088/0022-3727/43/46/465401

Google Scholar

[16] Z. J. Xu, W. Li, R. Q. Chu, P. Fu, G. Z. Zan, Piezoelectric and Dielectric Properties of (Ba1-xCax)(Ti0.95Zr0.05)O3 Lead-Free Ceramics, J Am Ceram Soc. 93 (2010) 2942-44.

DOI: 10.1016/j.physb.2010.08.028

Google Scholar

[17] Z. R. Li, Q. A. Zhang, F. Li, Z. Xu, X. Yao, Temperature Dependence of Dielectric/Piezoelectric Properties of (1-x)Bi(Mg1/2Ti1/2)O3-xPbTiO3 Ceramics with an MPB Composition, J Am Ceram Soc. 93 (2010) 3330-34.

DOI: 10.1111/j.1551-2916.2010.03860.x

Google Scholar

[18] J. H. Gao, D. H. Xue, Y. Wang, et al., Microstructure basis for strong piezoelectricity in Pb-free Ba(Zr0.2Ti0.8)O3-(Ba0.7Ca0.3)TiO3 ceramics, Appl Phys Lett. 99 (2011).

DOI: 10.1063/1.3629784

Google Scholar

[19] C. Xu, D. Lin, K. W. Kwok, Electrical properties of (K0.5Na0.5)(1-x) AgxNbO(3) lead-free piezoelectric ceramics, J Mater Sci-Mater El.19 (2008) 1054-57.

Google Scholar

[20] K. Yan, K. Matsumoto, T. Karaki, M. Adachi, Microstructure and Piezoelectric Properties of (K0.5Na0.5)NbO3-BaTiO3 Lead-Free Piezoelectric Ceramics Modified by B2O3-CuO, J Am Ceram Soc. 93 (2010) 3823-27.

DOI: 10.1111/j.1551-2916.2010.03932.x

Google Scholar

[21] S. E. Park ,T. R. Shrout, Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals, J Appl Phys. 82 (1997) 1804-11.

DOI: 10.1063/1.365983

Google Scholar

[22] H. Y. Park, C. W. Ahn, K. H. Cho, et al., Low-temperature sintering and piezoelectric properties of CuO-added 0.95(Na0.5K0.5)NbO3-0.05BaTiO3 ceramics, J Am Ceram Soc. 90 (2007)4066-69.

Google Scholar