[1]
G.H. Haertling, Ferroelectric ceramics: History and technology, J. Am. Ceram. Soc. 82 (1999) 797-818.
Google Scholar
[2]
S. J. Zhang, R. Xia, and T. R. Shrout, Lead-Free Piezoelectric Ceramics vs. PZT, 2006 15th IEEE International Symposium on Applications of Ferroelectrics. (2007) 171-177.
DOI: 10.1109/isaf.2006.4349278
Google Scholar
[3]
C. G. Xu, D. M. Lin, and K. W. Kwok, Structure, electrical properties and depolarization temperature of (Bi0.5Na0.5)TiO3-BaTiO3 lead-free piezoelectric ceramics, Solid State Sci. 10 (2008) 934-940.
DOI: 10.1016/j.solidstatesciences.2007.11.003
Google Scholar
[4]
S. C. Zhao, G. R. Li, A. L. Ding, T. B. Wang, and Q. R. Yin, Ferroelectric and piezoelectric properties of (Na, K)0.5Bi0.5TiO3 lead free ceramics, J Phys D Appl Phys. 39 (2006) 2277-2281.
DOI: 10.1088/0022-3727/39/10/042
Google Scholar
[5]
Y. M. Li, W. Chen, J. Zhou, Q. Xu, H. Sun, and R. X. Xu, Dielectric and piezoelecrtic properties of lead-free (Na0.5Bi0.5)TiO3-NaNbO3 ceramics, Mat Sci Eng B-Solid. 112 (2004) 5-9.
DOI: 10.1016/j.mseb.2004.04.019
Google Scholar
[6]
J. Shieh, K.C. Wu, C.S. Chen, Switching characteristics of MPB compositions of (Bi0.5Na0.5)TiO3- BaTiO3-(Bi0.5K0.5)TiO3 lead-free ferroelectric ceramics, Acta Mater. 55 (2007) 3081-3087.
DOI: 10.1016/j.actamat.2007.01.012
Google Scholar
[7]
X. Y. Zhou, H. S. Gu, Y. Wang, W. Li, and T. S. Zhou, Piezoelectric properties of Mn-doped (Na0.5Bi0.5)0.92Ba0.08TiO3 ceramics, Materials Letters. 59 (2005) 1649-1652.
DOI: 10.1016/j.matlet.2005.01.034
Google Scholar
[8]
W. Jo, S. T. Zhang, A. B. Kounga, and J. Rodel, Lead-Free Piezoceramics with a Giant Strain for Actuator Applications, Ieee Int Ferro. (2008) 387-388.
DOI: 10.1109/isaf.2008.4693817
Google Scholar
[9]
S. T. Zhang, A. B. Kounga, W. Jo, C. Jamin, K. Seifert, T. Granzow, J. Rodel, and D. Damjanovic, High-Strain Lead-free Antiferroelectric Electrostrictors, Advanced Materials. 21 (2009) 4716-+.
DOI: 10.1002/adma.200901516
Google Scholar
[10]
W. Jo, T. Granzow, E. Aulbach, J. Rodel, and D. Damjanovic, Origin of the large strain response in K0.5Na0.5NbO3-modified Bi0.5Na0.5TiO3-BaTiO3 lead-free piezoceramics, J. Appl. Phy. 105 (2009).
DOI: 10.1063/1.3121203
Google Scholar
[11]
T. Kimura, Y. Sakuma, and M. Murata, Texture development in piezoelectric ceramics by templated grain growth using heterotemplates, Journal of the European Ceramic Society. 25 (2005) 2227-2230.
DOI: 10.1016/j.jeurceramsoc.2005.03.036
Google Scholar
[12]
T. Takeuchi, T. Tani, and Y. Saito, Piezoelectric properties of bismuth layer-structured ferroelectric ceramics with a preferred orientation processed by the reactive templated grain growth method, Jpn. J. Appl. Phys. Part 1-Regular Papers Short Notes & Review Papers. 38 (1999) 5553-5556.
DOI: 10.1143/jjap.38.5553
Google Scholar
[13]
K. Watari, B. Brahmaroutu, G. L. Messing, et al., Epitaxial growth of anisotropically shaped, single-crystal particles of cubic SrTiO3, Journal of Materials Research. 15 (2000) 846-849.
DOI: 10.1557/jmr.2000.0121
Google Scholar
[14]
D. Liu, Y. K. Yan, and H. P. Zhou, Synthesis of micron-scale platelet BaTiO3, Journal of the American Ceramic Society. 90 (2007) 1323-1326.
DOI: 10.1111/j.1551-2916.2007.01525.x
Google Scholar
[15]
A. Hussain, C.W. Ahn, H.J. Lee, et al., Anisotropic electrical properties of Bi0.5(Na0.75K0.25)0.5TiO3 ceramics fabricated by reactive templated grain growth, Curr. Appl. Phys. 10 (2010) 305-310.
DOI: 10.1016/j.cap.2009.06.013
Google Scholar