Phase Transitions, Dielectric and Piezoelectric Properties of BiScO3-PbTiO3 Ceramic Solid Solutions

Article Preview

Abstract:

Dielectric and piezoelectric properties of ceramic solid solutions based on the compositions close to the MPB in the system (1-x)BiScO3 – xPbTiO3 (x- 0.63, 0.635, 0.64) have been studied. The 1st order phase transitions were observed at temperatures near 700 K. Increase in the lead titanate content stimulates slight increase in the TC value. Cr2O3 additives in amounts up to 0.2 w. % favor to the decrease of total conductivity and dielectric loss at high temperatures. Increase in the d33 and kt piezocoefficients was observed in modifed ceramic. Besides peaks in temperature dependences of dielectric permittivity and dielectric loss marked ferroelectric to paraelectric phase transitions, effects of dielectric relaxation, determined by oxygen vacancies were revealed.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 512-515)

Pages:

1363-1366

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Jaffe, W.R. Cook and H. Jaffe, Piezoelectric ceramics, Academic Press, London and New York, 1971.

Google Scholar

[2] Y. Higuchi, H. Ogawa, D. Kuroda, M. Kimura, H. Takagi, Y. Sakabe, Piezoelectric ceramics for high temperature applications, Key Engineering Materials 421-422 (2010) 375-380.

DOI: 10.4028/www.scientific.net/kem.421-422.375

Google Scholar

[3] B. Noheda, J.A. Gonzalo, L.E. Cross, et al., Tetragonal-to-monoclinic phase transition in a ferroelectric perovskite: The structure of PbZr0.52Ti0.48O3, Phys. Rev. B 61 (2000) 8687-8695.

Google Scholar

[4] D. Damjanovic, A morphotropic phase boundary system based on polarization rotation and polarization extension, Appl. Phys. Lett. 97 (2010) 062906 (1-3).

DOI: 10.1063/1.3479479

Google Scholar

[5] V. Gupta, M. Sharma, and N. Thakur, Optimization Criteria for Optimal Placement of Piezoelectric Sensors and Actuators on a Smart Structure: A Technical Review, V. Gupta, M. Sharma, N. Thakur, Journ. Intell. Mater. Sys. Str.J. Intel. Mat. Sys. Str. 21, (2010) 1227-1243.

DOI: 10.1177/1045389x10381659

Google Scholar

[6] Yu.Ya. Tomashpol'skii, E.V. Zubova, K.P. Burdina, Yu.N. Venevtsev, X-ray diffraction study of of new perovskites prepared at high pressures, Kristallographiya (in Russian), 13 (1968) 987-990.

Google Scholar

[7] R.E. Eitel, C.A. Randall, T.R. Shrout, S.-E. Park, Preparation and characterization of high temperature perovskite ferroelelctrics in the solid solutions (1-x)BiScO3-xPbTiO3, Jpn. J. Appl. Phys. 41 (2002) 2099-2104.

DOI: 10.1143/jjap.41.2099

Google Scholar

[8] J Iniguez, D. Vanderbilt, L. Bellaiche, First- principles study of (BiScO3)1-x-(PbTiO3)x piezoelectric alloys, Phys. Rev. B 67 (2003) 224107 (1-6).

Google Scholar

[9] R.E. Eitel, S.J. Zhang, T.R. Shrout, I. Levin, C.A. Randall, Phase Diagram of the Perovskite system (1-x)BiScO3-xPbTiO3, J. Appl. Phys. 96 (2004) 2828-2831.

DOI: 10.1063/1.1777810

Google Scholar

[10] S. Zhang, R.E. Eitel, C.A. Randall, T.R. Shrout, Manganese-modified BiScO3-PbTiO3 piezoelelctric ceramic for high-temperature shear mode sensor, Appl. Phys. Lett. 86 (2005) 262904 (1-3).

DOI: 10.1063/1.1968419

Google Scholar

[11] T. Zou, X. Wang, W. Zhao, L. Li, Preparation and properties of fine-grain (1-x)BiScO3-xPbTiO3 ceramics by two-step sintering, J. Amer. Ceram. Soc. 91 (2008) 121-126.

DOI: 10.1111/j.1551-2916.2007.01903.x

Google Scholar

[12] L. Zhang, Zh. Xu, Zh Li, S. Hia, Xi Yao, Preparation and characterization of high Tc (1-x)BiScO3- xPbTiO3 ceramics from high energy ball milling process, J. Electroceram. 21 (2008) 605-608.

DOI: 10.1007/s10832-007-9282-4

Google Scholar

[13] A. Sehirlioglu, A. Sayir, F. Dynys, High temperature properties of BiScO3-PbTiO3 piezoelectric ceramics, J. Appl. Phys. 105 (2009) 114102 (1-7).

DOI: 10.1063/1.3158542

Google Scholar

[14] M. Alguero, H. Amorin, T. Hungria, J. Galy, A. Castro, Macroscopic ferroelectricity and piezo- electricity in nanostructured BiScO3-PbTiO3 ceramics, Appl. Phys. Lett. 94 (2009) 012902 (1-8).

DOI: 10.1063/1.3056660

Google Scholar

[15] B. Kim, P. Tong, D. Kwon, et al., Temperature-dependent neutron diffraction study of phase separation at morphotropic phase boundary in (1-x)BiScO3-xPbTiO3, J. Appl. Phys. 105 (2009) 114101 (1-6).

DOI: 10.1063/1.3130402

Google Scholar

[16] B.V. Egorova, E.D. Politova, G.M. Kaleva, A.V. Mosunov, S.Yu. Stefanovich, A.G. Segalla, J. Zeng, Phase Transitions and the Dielectric and Piezoelectric Properties of Ceramic Solid Solutions Based on BiScO –PbTiO3, Bull. Russ. Acad. Sci. 75 (2011) 1166-1169.

DOI: 10.3103/s1062873811050418

Google Scholar

[17] A.V. Mosunov, N.U. Venskovskii, G.M. Kaleva, Dielectric properties of oxygen ion-conductive (La,Sr)(Ga,Mg)O3 ceramics, Ferroelectrics 299 (2004) 149-152.

DOI: 10.1080/00150190490429565

Google Scholar

[18] W. Li, C. Wang, J. Zhu, and Y. Wang, Correlation among oxygen vacancies and its effect on fatigue in neodymium-modified bismuth titanate ceramics, J. Phys.: Condens. Matter 16 (2004) 9201-9208.

DOI: 10.1088/0953-8984/16/50/011

Google Scholar

[19] E.D. Politova, E.A. Fortalnova, G.M. Kaleva, et al., Ferroelectric phase transitions and electrocon- ducting properties of ceramic BIMEVOX solid solutions (Me = La, Zr), Ferroelectrics 391 (2009) 3-11.

DOI: 10.1080/00150190903001045

Google Scholar

[20] M.I. Morozov, D. Damjanovic, Charge migration in Pb(Zr,Ti)O3 ceramics and its relation to ageing, hardening and softening, J. Appl. Phys. 107 (2010) 034106 (1-10).

DOI: 10.1063/1.3284954

Google Scholar