Sol-Gel Derived Li2O Doped BNT-BKT-BT Ceramics: Microstructure and Piezoelectric Properties

Article Preview

Abstract:

The introduction of lithium ion into BNT-BKT-BT ceramics with sol-gel method allows the development of high-performance lead-free piezoelectric ceramics. Nanoscale precursor powders were synthesized through calcination of amorphous gels, and densified ceramics with single perovskite structure were prepared at a relatively low sintering temperature 1110 °C. Crystal grain growth was fully developed with the Li+ addition through scanning electron microscope observation. Enhanced electrical properties, piezoelectric constant d33~184 pC/N and planar electromechanical coupling factor kp~0.30, were obtained for the ceramics.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 512-515)

Pages:

1355-1358

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Jaffe, W. R. Cook, H Jaffe, Piezoelectric Ceramics, Academic Press, New York, 1971.

Google Scholar

[2] G. A. Smolenskii, V. A. Isupv, A. I. Afranovskaya, et al, New ferroelectrics of complex composition, J. Sov. Phys. Sol. Stat. 2 (1961) 2651-2654.

Google Scholar

[3] T. Takenaka, K. Sakata, (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics, Jpn. J. Appl. Phys. 30 [9B] (1991) 2236-2239.

DOI: 10.1002/eej.4391120709

Google Scholar

[4] Y. M. Li, W. Chen, J. Zhou, et al, Dielectric and ferroelectric properties of lead-free Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3 ferroelectric ceramics, Ceram. Int. 31 (2004), 139-142.

DOI: 10.1016/j.ceramint.2022.01.202

Google Scholar

[5] H. Nagata, M. Yoshida, Y. Makiuchi, et al, Large piezoelectric constant and high curie temperature of lead-free piezoelectric ceramics ternary system based on bismuth sodium titanate-bismuth potassium titanate-barium titanate near the morphotropic phase boundary, Jpn. J. Appl. Phys. 42 (2003) 7401-7403.

DOI: 10.1143/jjap.42.7401

Google Scholar

[6] X. X. Wang, X. G. Tang, H. L. W. Chan, Electromechanical and ferroelectric properties of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-BaTiO3 lead-free piezoelectric ceramics, Appl. Phys. Lett. 85 [1] (2004) 91-93.

DOI: 10.1063/1.1767592

Google Scholar

[7] Y. J. Ma, J. H. Cho, Y. H. Lee, et al, Hydrothermal synthesis of Bi1/2Na1/2TiO3 piezoelectric ceramics, Mater. Chem. Phys. 98 (2006) 5-8.

Google Scholar

[8] H. A. M. Van-Hal, W. A. Groen, S. Maassen, et al, Mechanochemical synthesis of BaTiO3, (Na0.5Bi0.5)TiO3 and Ba2NaNb5O15 dielectric ceramics, J. Eur. Ceram. Soc. 21 (2001) 1689-1692.

DOI: 10.1016/s0955-2219(01)00095-4

Google Scholar

[9] J. J. Hao, X. H. Wang, R. Z. Chen, et al, Synthesis of (Bi0.5Na0.5)TiO3 nanocrystalline powders by stearic acid gel method, Mater. Chem. Phys. 90 (2005) 282-285.

DOI: 10.1016/j.matchemphys.2004.05.019

Google Scholar

[10] M. Cernea, E. Andronescu, R. Radu, et al, Sol-gel synthesis and characterization of BaTiO3-doped (Bi0.5Na0.5)TiO3 piezoelectric ceramics, J. Alloys Compd. 490 (2010) 690-694.

DOI: 10.1016/j.jallcom.2009.10.140

Google Scholar

[11] Y. J. Dai, S. J. Zhang, T. R. Shrout, et al, Piezoelectric and ferroelectric properties of Li-doped (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3-BaTiO3 lead-free piezoelectric ceramics, J. Am. Ceram. Soc. 93 [4] (2010) 1108-1113.

DOI: 10.1007/s12034-011-0217-y

Google Scholar