Study of the Chemical Adsorption Property of Allylsilylazobenzene in the Surface Modification of Nanoporous Alumina Membrane

Article Preview

Abstract:

In order to clarify the chemical adsorption property of allylsilane to metal-oxide surface quantitatively and to obtain the information on the reaction conditions for the efficient surface modification, chemical surface modification of nanoporous alumina membranes (NPAMs) by a typical allylsilyl compound of 4-(allyldimethylsilyl) azobenzene was examined. The chemical surface modification was performed by immersing NPAMs into the solutions of the allylsilylazobenzene. The modification was investigated precisely by estimating the amount of the silylazobenzene adsorbed on the NPAM surface using a visible absorption spectroscopy with changing the temperature, solvent, and the concentration of the solution to reveal the effects of the reaction conditions on the adsorption property of the allylsilane to the metal-oxide surface. The solutions with higher temperatures, non-polar solvents, and higher concentrations were shown to be suitable for the efficient surface modification.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

46-52

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Arkles: Chemtech Vol. 7 (1977), p.766.

Google Scholar

[2] S. Naviroj, J.L. Koenig and H. Ishida: J. Adhes. Vol. 18 (1985), p.93.

Google Scholar

[3] E.P. Plueddemann: Silane Coupling Agents, 1st and 2nd ed., Plenum Press, New York (1982 and 1991).

Google Scholar

[4] K. Kakiage, T. Kyomen, M. Unno and M. Hanaya: Silicon Vol. 1 (2009), p.191.

Google Scholar

[5] K. Kakiage, M. Yamamura, E. Ido, T. Kyomen, M. Unno and M. Hanaya: Appl. Organometal. Chem. Vol. 25 (2011), p.98.

DOI: 10.1002/aoc.1722

Google Scholar

[6] The Chemistry of Organic Silicon Compounds Volume 1-3, edited by S. Patai, Z. Rappoport and Y. Apeloig, John Wiley & Sons, Chichester (1989-2001).

Google Scholar

[7] Organosilicon Chemistry I-VI: From Molecules to Materials, edited by N. Auner and J. Weis, Wiley-VCH, Weinheim (1993-2005).

Google Scholar

[8] Silanes and other Coupling Agents Volume 1-5, edited by K.L. Mittal, VSP, Utrecht (1992-2009).

Google Scholar

[9] K. Kakiage, Y. Nakada, T. Kogure, M. Yamamura, T. Kyomen, M. Unno and M. Hanaya: Silicon Chem. Vol. 3 (2008), p.303.

DOI: 10.1007/s11201-008-9032-8

Google Scholar

[10] K. Kakiage, T. Kyomen, M. Unno and M. Hanaya: Appl. Organometal. Chem. Vol. 24 (2010), p.198.

Google Scholar

[11] M. Unno, K. Kakiage, M. Yamamura, T. Kogure, T. Kyomen and M. Hanaya: Appl. Organometal. Chem. Vol. 24 (2010), p.247.

DOI: 10.1002/aoc.1612

Google Scholar

[12] K. Kakiage, M. Yamamura, E. Fujimura, T. Kyomen, M. Unno and M. Hanaya: Chem. Lett. Vol. 39 (2010), p.260.

Google Scholar

[13] K. Kakiage and M. Hanaya: Photochemistry Vol. 41 (2010), p.133.

Google Scholar

[14] K. Kakiage, M. Yamamura, T. Kyomen, M. Unno and M. Hanaya: Key Eng. Mater. Vol. 497 (2012), p.61.

Google Scholar

[15] T. Shimada, K. Aoki, Y. Shinoda, T. Nakamura, N. Tokunaga, S. Inagaki and T. Hayashi: J. Am. Chem. Soc. Vol. 125 (2003), p.4688.

Google Scholar

[16] K. Aoki, T. Shimada and T. Hayashi: Tetrahedron: Asymmetry Vol. 15 (2004), p.1771.

Google Scholar

[17] N. Fukaya, S. Onozawa, M. Ueda, K. Saitou, Y. Takagi, T. Sakakura and H. Yasuda: Chem. Lett. Vol. 39 (2010), p.402.

DOI: 10.1246/cl.2010.402

Google Scholar

[18] N. Fukaya, S. Onozawa, M. Ueda, T. Miyaji, Y. Takagi, T. Sakakura and H. Yasuda: Chem. Lett. Vol. 40 (2011), p.212.

DOI: 10.1246/cl.2011.212

Google Scholar

[19] N. Fukaya, M. Ueda, S. Onozawa, K. K. Bando, T. Miyaji, Y. Takagi, T. Sakakura and H. Yasuda: J. Mol. Catal. A: Chem. Vol. 342-343 (2011), p.58.

Google Scholar

[20] T. Miyaji, S. Onozawa, N. Fukaya, M. Ueda, Y. Takagi, T. Sakakura and H. Yasuda: J. Organomet. Chem. Vol. 696 (2011), p.1565.

DOI: 10.1016/j.jorganchem.2010.12.030

Google Scholar

[21] K. Kakiage: Development of Functional Materials by Hybridization of Metal Oxides and Organosilicon Compounds, Gunma University: Doctoral dissertation (2011).

Google Scholar

[22] O. Jessensky, F. Müller and U. Gösele: Appl. Phys. Lett. Vol. 72 (1998), p.1173.

Google Scholar

[23] A.P. Li, F. Müller, A. Birner, K. Nielsch and U. Gösele: J. Appl. Phys. Vol. 84 (1998), p.6023.

Google Scholar

[24] H. Masuda, F. Matsumoto and K. Nishio: Electrochemistry Vol. 72 (2004), p.389.

Google Scholar

[25] H. Asoh and S. Ono, Electrocrystallization in Nanotechnology, edited by G. Staikov, Wiley-‌VCH, Weinheim (2007), Chap. 7, pp.138-166.

Google Scholar

[26] Y. Lei, W. Cai and G. Wilde: Prog. Mater. Sci. Vol. 52 (2007), p.465.

Google Scholar

[27] Y.P. Wang and T.Y. Tseng: J. Mater. Sci. Vol. 34 (1999), p.4573.

Google Scholar

[28] E. Palomares, J.N. Clifford, S.A. Haque, T. Lutz and J.R. Durrant: J. Am. Chem. Soc. Vol. 125 (2003), p.475.

Google Scholar

[29] M. Yamamura, N. Kano, T. Kawashima, T. Matsumoto, J. Harada and K. Ogawa: J. Org. Chem. Vol. 73 (2008), p.8244.

Google Scholar

[30] T. Weidner, F. Bretthauer, N. Ballav, H. Motschmann, H. Orendi, C. Bruhn, U. Siemeling and M. Zharnikov: Langmuir Vol. 24 (2008), p.11691.

DOI: 10.1021/la802454w

Google Scholar

[31] B. Uno, Y. Matsuhisa, K. Kano and T. Kubota: Chem. Pharm. Bull. Vol. 32 (1984), p.1691.

Google Scholar

[32] K. Murakoshi, G. Kano, Y. Wada, S. Yanagida, H. Miyazaki, M. Matsumoto and S. Murasawa: J. Electroanal. Chem. Vol. 396 (1995), p.27.

Google Scholar

[33] K.S. Finnie, J.R. Bartlett and J.L. Woolfrey: Langmuir Vol. 14 (1998), p.2744.

Google Scholar

[34] T. Kato and S. Hayase: J. Electrochem. Soc. Vol. 154 (2007), p. B117.

Google Scholar

[35] P.D. Lickiss: Adv. Inorg. Chem. Vol. 42 (1995), p.147.

Google Scholar

[36] I.S. Ignatyev, F. Partal and J.J.L. González: Chem. Phys. Lett. Vol. 384 (2004), p.326.

Google Scholar