Electrical Conductivity of Li2xZn2-3xTi1+xO4 Crystal

Article Preview

Abstract:

Li2xZn2-3xTi1+xO4 (x=0.33, 0.50, 0.60) crystals were grown in a double-mirror type optical floating-zone furnace. The electrical conductivity of Li2xZn2-3xTi1+xO4 of crystal was measured in a frequency range from 100 Hz to 10 MHz and in a temperature range from 330 to 700 K, in nitrogen gas. It was revealed the electrical conductivity mechanism changes at the temperature region of 480520 K. The electrical conductivity of polycrystalline Li2xZn2-3xTi1+xO4 (x=0.6) shows nearly two orders of magnitude higher values compared to other samples.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

31-35

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Furusawa, S. Shimizu, K. Sekine, and H. Tabuchi: Solid State Ionics Vol. 167 (2004), 325.

Google Scholar

[2] S. Furusawa, H. Tabuchi, T. Tsurui: Solid State Ionics Vol. 178 (2007), 1033.

Google Scholar

[3] S. Furusawa, A. Kamiyama, and T. Tsurui: Solid State Ionics Vol. 179 (2008), 536.

Google Scholar

[4] S. Furusawa, T. Kasahara, and A. Kamiyama: Solid State Ionics Vol. 180 (2009), 649.

Google Scholar

[5] S. Furusawa, K. Shimizu and T. Tsurui: J. Phys. Soc. Jpn. Vol. 79 Supplement A (2010) 76.

Google Scholar

[6] S. Furusawa and S. Enokida: Key Engineering Materials Vol. 459 (2011) 27.

Google Scholar

[7] V.S. Hernandez, L.M.T. Martinez, G.C. Mather, and A.R. West: J. Mater. Chem. Vol. 6 (1996) 1533.

Google Scholar

[8] M.S.C. Câmara, P.N. Lisboa-Filho, and M.D. Cabrelon, Mater. Chem. Phys. Vol. 82 (2003) 68.

Google Scholar

[9] M.S.C. Câmara et al., International Journal of Quantum Chemistry Vol. 103, (2005) 580.

Google Scholar

[10] L.A. Lenonidov et al.: J. Structural Chem. Vol. 45 (2004) 262.

Google Scholar

[11] Z. Hong et al.: Electrochem. Commun. Vol. 12 (2010) 720.

Google Scholar

[12] S. George and M.T. Sebastian: J. Am. Chem. Soc. Vol. 93 (2010) 2164.

Google Scholar

[13] S. Furusawa, H. Ochiai, and K. Murayama: Key Engineering Materials Vol. 497 (2011) 26.

Google Scholar