Effects of Interface Roughness and Lattice Strain on Perpendicular Magnetic Anisotropy in Co/Pd Multilayer

Article Preview

Abstract:

The effects of strain and interface roughness at the Co/Pd interface are investigated from the viewpoint of perpendicular magnetic anisotropy (PMA) using the DV-Xα cluster model calculation method. It is found that spin projected occupation number ratio of magnetic quantum number |m| = 2 for the Co 3d electrons enhances by expanding the lattice within a close-packed plane of fcc stacking and, hence, enhances the PMA. Rough interface decreases the spin projected occupation number ratio of |m| = 2 and, hence, decreases the PMA. These results explain the PMA properties of Co/Pd multilayers fabricated using molecular beam epitaxy (MBE) technique and RF sputtering techniques.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

7-11

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. F. Carcia, A. D. Meinhaldt and A. Suna: Appl. Phys. Lett. Vol. 47 (1985), p.178.

Google Scholar

[2] P. F. Carcia: J. Appl. Phys. Vol. 63 (1988), p.5066.

Google Scholar

[3] K. Kyuno, J. –G. Ha, R. Yamamoto and S. Asano: Phys. Rev. B 54 (1996), p.1092.

Google Scholar

[4] K. Kyuno, J. –G. Ha, R. Yamamoto and S. Asano: J. Phys. Condens. Matter 8 (1996), p.3297.

Google Scholar

[5] Y. Wu, J. Stohr, B. D. Hermsmeier, M. G. Samant and D. Weller: Phys. Rev. Lett. Vol. 69 (1992), p.2307.

Google Scholar

[6] A. Agui, A. Asahi, J. Sayama, M. Mizumaki, M. Tanaka and T. Osaka: J. Mag. Mag. Mater. Vol. 320 (2008), p.3015.

Google Scholar

[7] M. Ota: Master's Thesis, Gunma University (2002), in Japanese.

Google Scholar

[8] H. Sakurai, M. Ota, F. Itoh, M. Itou, Y. Sakurai and A. Koizumi: Appl. Phys. Lett. Vol. 88 (2006), p.062507.

DOI: 10.1063/1.2172408

Google Scholar

[9] M. Ota: Doctor's Thesis, Gunma University (2009), in Japanese.

Google Scholar

[10] M. Ota, M. Itou, Y. Sakurai, A. Koizumi and H. Sakurai: Appl. Phys. Lett. Vol. 96 (2010), p.152505.

DOI: 10.1063/1.3374881

Google Scholar

[11] H. Nishino, R. Yamaki, M. Itou, Y. Sakurai, H. Sakurai, and M. Ito: Key Eng. Mater. Vol. 459 (2011), p.11.

Google Scholar

[12] K. Suzuki, N. Go, S. Emoto, R. Yamaki, M. Itou, Y. Sakurai and H. Sakurai: Key Eng. Mater. Vol. 497 (2012), p.8.

Google Scholar

[13] H. Nemoto and Y. Hosoe: J. Appl. Phys. Vol. 97 (2005), p. 10J109.

Google Scholar

[14] J. Carrey, A. E. Berkowitz, W. F. Egelhoff, Jr. and D. J. Smith: Appl. Phys. Lett. Vol. 83 (2003), p.5259.

Google Scholar

[15] H. Adachi, M. Tsukada and C. Satoko: J. Phys. Soc. Jpn. Vol. 45 (1978), p.875.

Google Scholar

[16] K. Miura, H. Kimura, S. Imanaga and Y. Hayafuji: J. Appl. Phys. Vol. 72 (1992), p.4826.

Google Scholar

[17] G. H. O. Daalderop, P. J. Kelly and M. F. H. Schuurmans: Phys. Rev. B 42 (1990), p.7270.

Google Scholar